Control System Toolbox™

Reference

)y

MATLAB

R2015b <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox™ Reference

© COPYRIGHT 2001-2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2001

July 2002

June 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 5.1 (Release 12.1)
Revised for Version 5.2 (Release 13)
Revised for Version 6.0 (Release 14)
Revised for Version 6.2 (Release 14SP2)
Revised for Version 6.2.1 (Release 14SP3)
Revised for Version 7.0 (Release 2006a)
Revised for Version 7.1 (Release 2006b)
Revised for Version 8.0 (Release 2007a)
Revised for Version 8.0.1 (Release 2007b)
Revised for Version 8.1 (Release 2008a)
Revised for Version 8.2 (Release 2008b)
Revised for Version 8.3 (Release 2009a)
Revised for Version 8.4 (Release 2009b)
Revised for Version 8.5 (Release 2010a)
Revised for Version 9.0 (Release 2010b)
Revised for Version 9.1 (Release 2011a)
Revised for Version 9.2 (Release 2011b)
Revised for Version 9.3 (Release 2012a)
Revised for Version 9.4 (Release 2012b)
Revised for Version 9.5 (Release 2013a)
Revised for Version 9.6 (Release 2013b)
Revised for Version 9.7 (Release 2014a)
Revised for Version 9.8 (Release 2014b)
Revised for Version 9.9 (Release 2015a)
Revised for Version 9.10 (Release 2015b)

Functions — Alphabetical List

1

Block Reference

2|

Functions — Alphabetical List

1

Functions — Alphabetical List

1-2

abs

Entrywise magnitude of frequency response

Syntax

absfrd = abs(sys)

Description
absfrd = abs(sys) computes the magnitude of the frequency response contained in

the FRD model sys. For MIMO models, the magnitude is computed for each entry. The
output absfrd is an FRD object containing the magnitude data across frequencies.

See Also

bodemag | sigma | fnorm

Introduced in R2006a

absorbDelay

absorbDelay

Replace time delays by poles at z = 0 or phase shift

Syntax

sysnd = absorbDelay(sysd)
[sysnd,G] = absorbDelay(sysd)

Description

sysnd = absorbDelay(sysd) absorbs all time delays of the dynamic system model
sysd into the system dynamics or the frequency response data.

For discrete-time models (other than frequency response data models), a delay of k
sampling periods is replaced by K poles at z = 0. For continuous-time models (other than
frequency response data models), time delays have no exact representation with a finite
number of poles and zeros. Therefore, use pade to compute a rational approximation of
the time delay.

For frequency response data models in both continuous and discrete time, absorbDelay
absorbs all time delays into the frequency response data as a phase shift.

[sysnd,G] = absorbDelay(sysd) returns the matrix G that maps the initial states of
the ss model sysd to the initial states of the sysnd.

Examples

Example 1

Create a discrete-time transfer function that has a time delay and absorb the time delay
into the system dynamics as poles at z = 0.

z = tfF("z",-1);

sysd = (--4*z -.1)/(z"2 + 1.05*z + .08);
sysd. InputDelay = 3

1-3

1 Functions — Alphabetical List

These commands produce the result:

Transfer function:
-0.4 z - 0.1

z"2 + 1.05 z + 0.08
Sample time: unspecified

The display of sysd represents the InputDelay as a factor of z*(-3), separate from the
system poles that appear in the transfer function denominator.

Absorb the delay into the system dynamics.
sysnd = absorbDelay(sysd)

The display of sysnd shows that the factor of z*(-3) has been absorbed as additional
poles in the denominator.

Transfer function:
-0.4 z - 0.1

275 + 1.05 24 + 0.08 23

Sample time: unspecified
Additionally, sysnd has no input delay:
sysnd. InputDelay

ans =

0

Example 2
Convert "nk" into regular coefficients of a polynomial model.

Consider the discrete-time polynomial model:
m = idpoly(1,[0 0 0 2 3]);

The value of the B polynomial, m.b, has 3 leading zeros. Two of these zeros are treated as
input-output delays. Consequently:

1-4

absorbDelay

sys = tf(m)

creates a transfer function such that the numerator is [0 2 3] and the 10 delay is 2. In
order to treat the leading zeros as regular B coefficients, use absorbDelay:

m2 = absorbDelay(m);
sys2 = tf(m2);

sys2"s numeratoris [0 O O 2 3] and 10 delay is 0. The model m2 treats the leading

zeros as regular coefficients by freeing their values. m2.Structure.b.Free(1:2) is
TRUE while m.Structure.b.Free(1:2) is FALSE.

See Also
totaldelay | hasdelay | pade

Introduced in R2011b

1-5

1

Functions — Alphabetical List

1-6

allmargin

Gain margin, phase margin, delay margin and crossover frequencies

Syntax

S = allmargin(sys)
S = allmargin(mag,phase,w,ts)
Description

S = allmargin(sys) computes the gain margin, phase margin, delay margin and the
corresponding crossover frequencies of the SISO open-loop model sys. The al Imargin
command is applicable to any SISO model, including models with delays.

The output S is a structure with the following fields:

* GMFrequency — All —180° (modulo 360°) crossover frequencies in rad/TimeUnit,
where TimeUnit is the time units of the input dynamic system, specified in the
TimeUnit property of sys.

+ GainMargin — Corresponding gain margins, defined as 1/G, where G is the gain at
the —180° crossover frequency. Gain margins are in absolute units.

* PMFrequency — All 0 dB crossover frequencies in rad/TimeUnit, where TimeUnit
is the time units of the input dynamic system, specified in the TimeUnit property of
Sys).

+ PhaseMargin — Corresponding phase margins in degrees.

* DMFrequency and DelayMargin — Critical frequencies and the corresponding delay

margins. Delay margins are specified in the time units of the system for continuous-
time systems and multiples of the sample time for discrete-time systems.

+ Stable — 1 if the nominal closed-loop system is stable, O otherwise.

Where stability cannot be assessed, Stable is set to NaN. In general, stability cannot
be assessed for an frd system.

S = allmargin(mag,phase,w,ts) computes the stability margins from the frequency
response data mag, phase, w, and the sample time, ts. Provide magnitude values mag

allmargin

in absolute units, and phase values phase in degrees. You can provide the frequency
vector W in any units; al Imargin returns frequencies in the same units. al Imargin
interpolates between frequency points to approximate the true stability margins.

See Also

linearSystemAnalyzer | margin

Introduced before R2006a

1

Functions — Alphabetical List

1-8

AnalysisPoint

Points of interest for linear analysis

Syntax

AP = AnalysisPoint(name)
AP = AnalysisPoint(name,N)
Description

AnalysisPoint is a Control Design Block for marking a location in a control system
model as a point of interest for linear analysis and controller tuning. You can combine an
AnalysisPoint block with numeric LTI models, tunable LTI models, and other Control
Design Blocks to build tunable models of control systems. AnalysisPoint locations are
available for analysis with commands such as getlOTransfer or getLoopTransfer.
Such locations are also available for specifying design goals for control system tuning.

For example, consider the following control system.

| e

Suppose that you are interested in the effects of disturbance injected at v in this control
system. Inserting an AnalysisPoint block at the location u associates an implied
input, implied output, and the option to open the loop at that location, as in the following
diagram.

AnalysisPoint

Suppose that T is a model of the control system including the AnalysisPoint

block, AP_u. In this case, the command getlOTransfer (T, "AP_u", "y") returns

a model of the closed-loop transfer function from u to y. Likewise, the command
getLoopTransfer (T, "AP_u",-1) returns a model of the negative-feedback open-loop
response, CG, measured at the location u.

AnalysisPoint blocks are also useful when tuning a control system using

Robust Control Toolbox™ tuning commands such as systune. You can use an
AnalysisPoint block to mark a loop-opening location for open-loop tuning
requirements such as TuningGoal . LoopShape or TuningGoal _.Margins.

You can also use a AnalysisPoint block to mark the specified input or output

for tuning requirements such as TuningGoal .Gain. For example, Req =
TuningGoal .Margins("AP_u",5,40) constrains the gain and phase margins at the
location .

You can create AnalysisPoint blocks explicitly using the AnalysisPoint command
and connect them with other block diagram components using model interconnection
commands. For example, the following code creates a model of the system illustrated
above. (See “Construction” on page 1-10 and “Examples” on page 1- below for
more information.)

G = tf(1,[1 2]);

C Itiblock._pid("C","pi~™);

AP_u = AnalysisPoint("u®);

T = feedback(G*AP_u*C,1); % closed loop r->y

1-9

1 Functions — Alphabetical List

1-10

You can also create analysis points implicitly, using the connect command.
The following syntax creates a dynamic system model with analysis points, by
interconnecting multiple models sysl,sys2,...,sysN:

sys = connect(sysl,sys2,...,sysN, inputs,outputs,APs);

The string vector APs lists the signal locations at which to insert analysis points. The
software automatically creates and inserts an AnalysisPoint block with channels
corresponding to these locations. See connect for more information.

Construction

AP = AnalysisPoint(name) creates a single-channel analysis point. Insert AP
anywhere in the generalized model of your control system to mark a point of interest for
linear analysis or controller tuning. name specifies the block name.

AP = AnalysisPoint(name,N) creates a multi-channel analysis point with N
channels. Use this block to mark a vector-valued signal as a point of interest or to bundle
together several points of interest.

Input Arguments
name

Analysis point name, specified as a string. This input argument sets the value of the
Name property of the AnalysisPoint block. (See “Properties” on page 1-10.) When
you build a control system model using the block, the Name property is what appears in
the Blocks list of the resulting genss model.

N

Number of channels for a multichannel analysis point, specified as a scalar integer.

Properties

Location

Names of channels in the AnalysisPoint blocks, specified as a string or a cell array of
strings.

AnalysisPoint

By default, the analysis-point channels are named after the name argument. For
example, if you have a single-channel analysis point, AP, that has name "AP", then
AP.Location = "AP" by default. If you have a multi-channel analysis point, then
AP_Location = {"AP(1)","AP(2)", ...} by default. Set AP.Location to a different
value if you want to customize the channel names.

Open

Loop-opening state, specified as a logical value or vector of logical values. This property
tracks whether the loop is open or closed at the analysis point.

For example, consider the feedback loop of the following illustration.

+

r —> C(s)

A 4

G(s)

\
<

X

A

You can model this feedback loop as follows.

tf(1,.[1 2]);
Itiblock.pid("C","pi~™);
AnalysisPoint("X");
feedback(G*C,X);

X Oo

You can get the transfer function from r to y with the feedback loop open at X as follows.
Try = getlOTransfer(T, " r","y","X");

In the resulting generalized state-space (genss) model, the AnalysisPoint block "X" is
marked open. In other words, Try_.Blocks.X.Open = 1.

For a multi-channel analysis point, then Open is a logical vector with as many entries as
the analsysis point has channels.

Default: 0 for all channels
Ts

Sample time. For AnalysisPoint blocks, the value of this property is automatically set
to the sample time of other blocks and models you connect it with.

1-11

1 Functions — Alphabetical List

Default: O (continuous time)
TimeUnit

String representing the unit of the time variable. This property specifies the units for
the time variable, the sample time Ts, and any time delays in the model. Use any of the
following values:

* "nanoseconds”

* "microseconds”

* "milliseconds*®

* T"seconds”

* "minutes”

* "hours-
+ "days”
+ "weeks"

* "months*
- "years"

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: "seconds”
InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if Sys is a two-input model, enter:

sys. InputName = "controls”;
The input names automatically expand to {"controls(1)"; "controls(2)"}.

You can use the shorthand notation u to refer to the InputName property. For example,
SYS.U is equivalent to sys. InputName.

1-12

AnalysisPoint

Input channel names have several uses, including:

+ Identifying channels on model display and plots
+ Extracting subsystems of MIMO systems

* Specifying connection points when interconnecting models
Default: Empty string * " for all input channels
InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string " " for all input channels
InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys. InputGroup.controls = [1 2];
sys. InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, b, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:, "controls™)
Default: Struct with no fields
OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if Sys is a two-output model, enter:

sys.OutputName = "measurements”;

1-13

1 Functions — Alphabetical List

1-14

The output names automatically expand to
{"measurements(1)"; "measurements(2)"}.

You can use the shorthand notation y to refer to the OutputName property. For example,
Sys.Yy is equivalent to sys.OutputName.

Output channel names have several uses, including:

+ Identifying channels on model display and plots
+ Extracting subsystems of MIMO systems

+ Specifying connection points when interconnecting models
Default: Empty string " " for all output channels
OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string " " for all output channels
OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the

output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];
sys. InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys("measurement”,:)
Default: Struct with no fields
Name

System name. Set Name to a string to label the system.

AnalysisPoint

Default: " "
Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {3}

UserData

Any type of data you want to associate with system. Set UserData to any MATLAB®
data type.

Default: []

Examples

Feedback Loop with Analysis Point

Create a model of the following feedback loop with an analysis point in the feedback
path.

r— Cis) G(s) ¥

X

o~

For this example, the plant model is G =1/(s+2) Cisa tunable PI controller, and X is
the analysis point.

tf(1,[1 2]):
Itiblock._pid("C","pi™);
AnalysisPoint("X");
feedback(G*C,X);

-InputName = "r~°;
-OutputName = "y";

444X 0®
|

1-15

1 Functions — Alphabetical List

T is a tunable genss model. T.Blocks contains the Control Design Blocks of the model,
which are the controller, C, and the analysis point, X.

T.Blocks

ans

: [1x1 Itiblock.pid]
: [1x1 AnalysisPoint]

xX O

Examine the step response of T.

stepplot(T)

Step Response

From:r To:y

1 . . : . . . :

06 7

0.5 .

Amplitude

0.2 'll' T

o1 -

D 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 18000 18000

Time (seconds)

1-16

AnalysisPoint

The presence of the AnalysisPoint block does not change the dynamics of the model.

You can use the analysis point for linear analysis of the system. For instance, extract the
system response at "y~ to a disturbance injected at the analysis point.

Txy = getlOTransfer(T, X","y");

The AnalysisPoint block also allows you to temporarily open the feedback loop at that
point. For example, compute the open-loop response from "r* to "y"~.

Try_open = getlOTransfer(T,"r","y","X");

Specifying the analysis point name as the last argument to getlOTransfer extracts the
response with the loop open at that point. Examine the step response of Try_open to
verify that it is the open-loop response.

stepplot(Try_open);

1-17

1 Functions — Alphabetical List

Step Response

From: r To:y
0.1

Amplitude
g

0 20 40 60 80 100 120 1440 160 180 200

Time (seconds)

Feedback Loop With Analysis Point Inserted by connect

Create a model of the following block diagram from r to y. Insert an analysis point at an
internal location, wu.

1-18

AnalysisPoint

Create C and G, and name the inputs and outputs.

C = pid(2,1);
C.InputName =

S

C.OutputName = "u";
G = Zpk([],[—l,—l] 11);
G.InputName = "u”;
G.OutputName = "y-°;

Create the summing junction.
Sum = sumblk("e = r - y7);

Combine C, G, and the summing junction to create the aggregate model, with an analysis
point at u.

T

connect(G,C,Sum,"r","y","u")

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, anc
AnalysisPoints_: Analysis point, 1 channels, 1 occurrences.

Type "ss(T)" to see the current value, "get(T)" to see all properties, and "T.Blocks" 1

The resulting T is a genss model. The connect command creates the AnalysisPoint
block, AnalysisPoints_, and inserts it into T. To see the name of the analysis point
channel in AnalysisPoints_, use getPoints.

getPoints(T)

The analysis point channel is named "u”. You can use this analysis point to extract
system responses. For example, the following commands extract the open-loop transfer at
u and the closed-loop response at y to a disturbance injected at w.

L = getLoopTransfer (T, u",-1);
Tuy = getlOTransfer(T, u","y");

1-19

1 Functions — Alphabetical List

1-20

T is equivalent to the following block diagram, where AP_u designates the
AnalysisPoint block AnalysisPoints_ with channel name u.

Multi-Channel Analysis Points
Create a block for marking two analysis points in a MIMO model.

In the control system of the following illustration, consider each signal a vector-valued
signal of size 2. In other words, the signal r represents {r (1) ,r(2)}, y represents

{y(1),y(2)}, and so on.

+

r— C(s)

A 4

G(s)

\
<

X

A

The feedback signal is therefore also a vector-valued signal of size 2.
Create a block for marking the two analysis points in the feedback path.
AP = AnalysisPoint("X",2)

AP =

AnalysisPoint

Multi-channel analysis point at locations:
X(1)
X(2)

Type "ss(AP)" to see the current value and "'get(AP)" to see all properties.

The AnalysisPoint block is stored as a variable in the MATLAB workspace called AP.
In addition, the Name property of the block is set to X. When you interconnect the block
with numeric LTI models or other Control Design Blocks, this analysis-point block is
identified in the Blocks property of the resulting genss model as X. The block name X is
automatically expanded to generate the channel names X(1) and X(2).

It is sometimes convenient to change the channel names to match the names of the
signals they correspond to in a block diagram of your model. For example, suppose the
points of interest you want to mark in your model are signals named L and V. Change the
Location property of AP to make the names match those signals.

AP _.Location = {"L";"V"}
AP =
Multi-channel analysis point at locations:

L
\

Type "ss(AP)' to see the current value and "'get(AP)" to see all properties.
Although the channel names have changed, the block name remains X.

AP _Name

ans =

X

Therefore, the Blocks property of a genss model you build with this block still identifies
the block as X. Use getPoints to find the channel names of available analysis points in
a genss model.

. “Control System with Multichannel Analysis Points”

More About

. “Control Design Blocks”

1-21

1 Functions — Alphabetical List

. “Models with Tunable Coefficients”
. “Marking Signals of Interest for Control System Analysis and Design”

See Also

genss | getPoints | connect

Introduced in R2014b

1-22

append

append

Group models by appending their inputs and outputs

Syntax

sys = append(sysl,sys2,...,sysN)

Description
sys = append(sysl,sys2,..., sysN) appends the inputs and outputs of the models
sysl,...,sysN to form the augmented model sys depicted below.
iy - Sys eV
iy ——- sys2 =y 9
Uy | sysN - Yy
sys
For systems with transfer functions Hy(s), . . . , Hx(s), the resulting system sys has the

block-diagonal transfer function

Hy(s) 0 .. 0
0 Hys)

: : .0
0 - 0 Hy(s

1-23

1 Functions — Alphabetical List

1-24

For state-space models sysl and sys2 with data (A, By, C1, D) and (Az, Bs, Cs, Dy),
append(sysl,sys?2) produces the following state-space model:

HIEE M
MR M

Arguments

The input arguments sysl,..., SysN can be model objects s of any type. Regular matrices
are also accepted as a representation of static gains, but there should be at least one
model in the input list. The models should be either all continuous, or all discrete with
the same sample time. When appending models of different types, the resulting type is
determined by the precedence rules (see “Rules That Determine Model Type” for details).

There is no limitation on the number of inputs.

Examples

The commands

sysl = tf(1,[1 O]);

sys2 = ss(1,2,3,4);

sys = append(sysl1,10,sys2)

produce the state-space model

a =
x1l x2
x1 0 0
X2 0 1
b =
ul u2 u3

x1 1 0 0
X2 0O O 2

append

x1l x2
yl 1 0
y2 0 0
y3 0 3

d =

ul u2 u3
yl 0 0 0
y2 0 10 0
y3 0 0 4

Continuous-time model.

See Also

connect | feedback | parallel | series

Introduced before R2006a

1-25

1 Functions — Alphabetical List

augstate

Append state vector to output vector

Syntax

asys = augstate(sys)

Description
asys = augstate(sys) appends the state vector to the outputs of a state-space model.
Given a state-space model sys with equations

x =Ax+ Bu
y=Cx+Du

(or their discrete-time counterpart), augstate appends the states x to the outputs y to
form the model

e

This command prepares the plant so that you can use the feedback command to close
the loop on a full-state feedback u = —Kx.

Limitation

Because augstate is only meaningful for state-space models, it cannot be used with TF,
ZPK or FRD models.

See Also

Tfeedback | parallel | series

1-26

augstate

Introduced before R2006a

1-27

1 Functions — Alphabetical List

1-28

balreal

Gramian-based input/output balancing of state-space realizations

Syntax

[sysb, gl = balreal(sys)

[sysb, g] = balreal(sys, "AbsTol " ,ATOL,"RelTol" ,RTOL,"0Offset” ,ALPHA)
[sysb, g] = balreal(sys, condmax)

[sysb, g, T, Ti] = balreal(sys)

[sysb, g] = balreal(sys, opts)

Description

[sysb, gl = balreal(sys) computes a balanced realization sysb for the stable
portion of the LTI model sys. balreal handles both continuous and discrete systems. If
SYS is not a state-space model, it is first and automatically converted to state space using
SS.

For stable systems, sysb is an equivalent realization for which the controllability and
observability Gramians are equal and diagonal, their diagonal entries forming the vector
G of Hankel singular values. Small entries in G indicate states that can be removed to
simplify the model (use modred to reduce the model order).

If sys has unstable poles, its stable part is isolated, balanced, and added back to its
unstable part to form sysb. The entries of g corresponding to unstable modes are set to
Inf.

[sysb, g] = balreal(sys, "AbsTol " ,ATOL,"RelTol" ,RTOL, "Offset” ,ALPHA)
specifies additional options for the stable/unstable decomposition. See the stabsep
reference page for more information about these options. The default values are ATOL =
0, RTOL = l1le-8, and ALPHA = 1le-8.

[sysb, g] = balreal(sys, condmax) controls the condition number of the stable/
unstable decomposition. Increasing condmax helps separate close by stable and unstable
modes at the expense of accuracy. By default condmax=1e8.

balreal

[sysb, g, T, Ti] = balreal(sys) also returns the vector g containing the
diagonal of the balanced gramian, the state similarity transformation x, = Tx used to

convert Sys to sysb, and the inverse transformation 7% = T

If the system is normalized properly, the diagonal g of the joint gramian can be used to
reduce the model order. Because g reflects the combined controllability and observability
of individual states of the balanced model, you can delete those states with a small g(i)
while retaining the most important input-output characteristics of the original system.
Use modred to perform the state elimination.

[sysb, gl = balreal(sys, opts) computes the balanced realization using the
options specified in the hsvdOptions object opts.

Examples

Balanced Realization of Stable System

Consider the following zero-pole-gain model, with near-canceling pole-zero pairs:

sys = zpk([-10 -20.01],[-5 -9.9 -20.1],1)

sys =
(s+10) (s+20.01)

(st5) (s+9.9) (s+20.1)

Continuous-time zero/pole/gain model.

A state-space realization with balanced gramians is obtained by
[sysb,g] = balreal(sys);
The diagonal entries of the joint gramian are

g

1-29

1 Functions — Alphabetical List

ans =
0.1006 0.0001 0.0000

This indicates that the last two states of sysb are weakly coupled to the input and
output. You can then delete these states by

sysr = modred(sysb,[2 3],"del");
This yields the following first-order approximation of the original system.

zpk(sysr)

(s+4.97)

Continuous-time zero/pole/gain model.

Compare the Bode responses of the original and reduced-order models.

bodeplot(sys,sysr,"r--")

1-30

balreal

Magnitude {dB)

FPhase (deq)

Bode Diagram

10 10¢ 10" 10°
Frequency (rad/s)

The plots shows that removing the second and third states does not have much effect on

system dynamics.

Balanced Realization of Unstable System

Create this unstable system:
sysl=tf(1,[1 0 -1])
Transfer function:

1-31

1 Functions — Alphabetical List

Apply balreal to create a balanced gramian realization.
[sysb,g]l=balreal (sysl)
a =

x1l x2

x1 1 0
X2 0 -1

ul
x1 0.7071
X2 0.7071

X1 X2
yl 0.7071 -0.7071

ul
yl 0

Continuous-time model.
g =

Inf
0.2500

The unstable pole shows up as Inf in vector g.

More About

Algorithms

Consider the model

x=Ax+ Bu
y=Cx+Du

1-32

balreal

with controllability and observability gramians W, and W,. The state coordinate

transformation x = Tx produces the equivalent model

x¥=TAT Y%+ TBu
y=CT %+ Du

and transforms the gramians to

The function balreal computes a particular similarity transformation 7" such that
Wc = WO =diag(g)

See [1], [2] for details on the algorithm.

References

[1] Laub, A.J., M.T. Heath, C.C. Paige, and R.C. Ward, "Computation of System
Balancing Transformations and Other Applications of Simultaneous

Diagonalization Algorithms," IEEE® Trans. Automatic Control, AC-32 (1987), pp.
115-122.

[2] Moore, B., "Principal Component Analysis in Linear Systems: Controllability,
Observability, and Model Reduction," IEEE Transactions on Automatic Control,
AC-26 (1981), pp. 17-31.

[3] Laub, A.J., "Computation of Balancing Transformations," Proc. ACC, San Francisco,
Vol.1, paper FAS-E, 1980.

See Also

hsvdOptions | ss | gram | modred

Introduced before R2006a

1-33

1 Functions — Alphabetical List

1-34

balred

Model order reduction

Syntax

rsys = balred(sys,0ORDERS)

rsys = balred(sys,O0RDERS,BALDATA)
rsys = balred(___ ,opts)
Description

rsys = balred(sys,0RDERS) computes a reduced-order approximation rsys of the
LTI model sys. The desired order (number of states) for rsys is specified by ORDERS.
You can try multiple orders at once by setting ORDERS to a vector of integers, in which
case rsys is a vector of reduced-order models. bal red uses implicit balancing techniques
to compute the reduced- order approximation rsys. Use hsvd to plot the Hankel singular
values and pick an adequate approximation order. States with relatively small Hankel
singular values can be safely discarded.

When sys has unstable poles, it is first decomposed into its stable and unstable parts
using stabsep, and only the stable part is approximated. Use bal redOptions to specify
additional options for the stable/unstable decomposition.

When you have System Identification Toolbox™ software installed, Sys can only be an
identified state-space model (idss). The reduced-order model is also an Idss model.

rsys = balred(sys,ORDERS,BALDATA) uses balancing data returned by hsvd.
Because hsvd does most of the work needed to compute rsys, this syntax is more
efficient when using hsvd and bal red jointly.

rsys = balred(,0pts) computes the model reduction using the specified
options for the stable/unstable decomposition and state elimination method. Use the
balredOptions command to create the option setopts.

Note: The order of the approximate model is always at least the number of unstable poles
and at most the minimal order of the original model (number NNZ of nonzero Hankel
singular values using an eps-level relative threshold)

balred

More About

“Why Simplify Models?”

References

[1] Varga, A., "Balancing-Free Square-Root Algorithm for Computing Singular
Perturbation Approximations," Proc. of 30th IEEE CDC, Brighton, UK (1991), pp.
1062-1065.

See Also

balredOptions | hsvd | order | minreal | sminreal

Related Examples
“Approximate Model with Lower-Order Model”
“Approximate Model with Unstable or Near-Unstable Pole”

Introduced before R2006a

1-35

1 Functions — Alphabetical List

1-36

balredOptions

Create option set for model order reduction

Syntax

opts = balredOptions
opts = balredOptions("OptionName®, OptionValue)
Description

opts = balredOptions returns the default option set for the balred command.

opts = balredOptions("OptionName®, OptionValue) accepts one or more
comma-separated name/value pairs. Specify OptionName inside single quotes.

Input Arguments

Name-Value Pair Arguments

"StateEl imMethod”

State elimination method. Specifies how to eliminate the weakly coupled states (states

with smallest Hankel singular values). Specified as one of the following values:

"MatchDC* Discards the specified states and alters the remaining states to
preserve the DC gain.

"Truncate” Discards the specified states without altering the remaining

states. This method tends to product a better approximation in the
frequency domain, but the DC gains are not guaranteed to match.

Default: "MatchDC*

"AbsTol, RelTol"

Absolute and relative error tolerance for stable/unstable decomposition. Positive scalar

values. For an input model G with unstable poles, bal red first extracts the stable

balredOptions

dynamics by computing the stable/unstable decomposition G — GS + GU. The AbsTol
and RelTol tolerances control the accuracy of this decomposition by ensuring that the
frequency responses of G and GS + GU differ by no more than AbsTol + RelTol*abs(G).
Increasing these tolerances helps separate nearby stable and unstable modes at the
expense of accuracy. See stabsep for more information.

Default: AbsTol = 0; RelTol = 1e-8
"Offset”

Offset for the stable/unstable boundary. Positive scalar value. In the stable/unstable
decomposition, the stable term includes only poles satisfying

* Re(s) < -Offset * max(l1,]Im(s)|]) (Continuous time)
* |zl < 1 - Offset (Discrete time)

Increase the value of OFfset to treat poles close to the stability boundary as unstable.
Default: 1e-8

For additional information on the options and how to use them, see the balred reference
page.

Examples

Reduced-Order Approximation with Offset Option
Compute a reduced-order approximation of the system given by:

(s 4 0.5) (s + 1.1) (s + 2.9)

G (s) . : : -
{_.,- 10 "}[:—i FL1i(s+2)(s+3)

Use the OFfset option to exclude the pole at 5 = 11 % from the stable term of the stable/
unstable decomposition.

sys = zpk([--5 -1.1 -2.9],[-1le-6 -2 -1 -3],1);

% Create balredOptions

opt = balredOptions("Offset”, .001, "StateElimMethod”, "Truncate®);
% Compute second-order approximation

rsys = balred(sys,2,opt);

1-37

1 Functions — Alphabetical List

Magnitude {dB)

Phase (deg)

1-38

Compare the responses of the original and reduced-order models.

bodeplot(sys,rsys, "r--")

Bode Diagram

|'.1|: T T T

20 | —

-90 : : :
10°
Frequency (rad/s)

See Also

balred | stabsep

Introduced in R2010a

bandwidth

bandwidth

Frequency response bandwidth

Syntax
b = bandwidth(sys)
fb = bandwidth(sys,dbdrop)

Description

fb = bandwidth(sys) computes the bandwidth fb of the SISO dynamic system model
sys, defined as the first frequency where the gain drops below 70.79 percent (-3 dB) of its
DC value. The frequency b is expressed in rad/TimeUnit, where TimeUnit is the time
units of the input dynamic system, specified in the TimeUnit property of sys.

For FRD models, bandwidth uses the first frequency point to approximate the DC gain.

b = bandwidth(sys,dbdrop) specifies the critical gain drop in dB. The default
value 1s -3 dB, or a 70.79 percent drop.

If sys is an S1-by...-by-Sp array of models, bandwidth returns an array of the same size
such that

hgli, ..., Jp) = bandwidth(sys(:,:,j1,--., ip))

See Also

issiso | dcgain

Introduced before R2006a

1-39

1 Functions — Alphabetical List

bdschur

Block-diagonal Schur factorization

Syntax

[T,B,BLKS] = bdschur(A,CONDMAX)
[T,B] = bdschur(A,[],BLKS)

Description

[T,B,BLKS] = bdschur(A,CONDMAX) computes a transformation matrix 7 such that
B=T\A* Tisblock diagonal and each diagonal block is a quasi upper-triangular Schur
matrix.

[T,B] = bdschur(A,[],BLKS) pre-specifies the desired block sizes. The input matrix
A should already be in Schur form when you use this syntax.

Input Arguments

A: Matrix for block-diagonal Schur factorization.

CONDMAX: Specifies an upper bound on the condition number of 7. By default,
CONDMAX = 1/sqrt(eps). Use CONDMAX to control the tradeoff between block size
and conditioning of 7' with respect to inversion. When CONDMAX is a larger value, the
blocks are smaller and T becomes more ill-conditioned.

Output Arguments

T: Transformation matrix.
B: Matrix B=T\A*T.
BLKS: Vector of block sizes.

See Also

ordschur | schur

1-40

bdschur

Introduced in R2008a

141

1 Functions — Alphabetical List

blkdiag

Block-diagonal concatenation of models

Syntax

sys = blkdiag(sysl,sys2,...,sysN)

Description

sys = blkdiag(sysl,sys2, ...,sSysN) produces the aggregate system

syst 0 . 0
0 sys2
: . . 0
0 . 0 sysN

blkdiag is equivalent to append.

Examples

The commands

sysl tf(1,[1 0]);
sys2 = ss(1,2,3,4);
sys = blkdiag(sysl,10,sys2)

produce the state-space model

1-42

blkdiag

yl
y2
y3

Continuous-time model.

OOoORrPkF

ul
0
0
0

See Also

append | series | parallel | feedback

Introduced in R2009a

A OOW

1-43

1 Functions — Alphabetical List

1-44

bode

Bode plot of frequency response, magnitude and phase of frequency response

Syntax

bode(sys)

bode(sysli, - ..,sysN)
bode(sysl,PlotStylel, ... ,sysN,PlotStyleN)
bode(...,w)

[mag,phase] = bode(sys,w)

[mag, phase,wout] = bode(sys)

[mag, phase,wout,sdmag,sdphase] = bode(sys)

Description
bode(sys) creates a Bode plot of the frequency response of a dynamic system model
sys. The plot displays the magnitude (in dB) and phase (in degrees) of the system

response as a function of frequency.

When sys is a multi-input, multi-output (MIMO) model, bode produces an array of Bode
plots, each plot showing the frequency response of one I/O pair.

bode automatically determines the plot frequency range based on system dynamics.

bode

Bode Diagram

Magnitude (dB)
s

Phase (deg)
/

107 107" 10 10! 10 10
Frequency (rad/s)

bode(sysl, . . .,sysN) plots the frequency response of multiple dynamic systems in a
single figure. All systems must have the same number of inputs and outputs.

bode(sysl,PlotStylel, ... ,sysN,PlotStyleN) plots system responses using the
color, linestyle, and markers specified by the PlotStyle strings.

bode(...,w) plots system responses at frequencies determined by w.
+ Ifwis a cell array {wmin,wmax}, bode(sys,w) plots the system response at

frequency values in the range {wmin,wmax}.

+ If wis a vector of frequencies, bode (sys,w) plots the system response at each of the
frequencies specified in w.

[mag,phase] = bode(sys,w) returns magnitudes mag in absolute units and phase
values phase in degrees. The response values in mag and phase correspond to the
frequencies specified by w as follows:

+ Ifwis acell array {wmin,wmax}, [mag,phase] = bode(sys,w) returns the system
response at frequency values in the range {wmin,wmax}.

+ Ifwis a vector of frequencies, [mag,phase] = bode(sys,w) returns the system
response at each of the frequencies specified in w.

[mag,phase,wout] = bode(sys) returns magnitudes, phase values, and frequency
values wout corresponding to bode(sys).

1-45

1 Functions — Alphabetical List

1-46

[mag, phase,wout,sdmag,sdphase] = bode(sys) additionally returns the
estimated standard deviation of the magnitude and phase values when sys is an
identified model and [] otherwise.

Input Arguments

Sys

Dynamic system model, such as a Numeric LTI model, or an array of such models.
PlotStyle

Line style, marker, and color of both the line and marker, specified as a one-, two-, or
three-part string enclosed in single quotes (* *). The elements of the string can appear
in any order. The string can specify only the line style, the marker, or the color.

For more information about configuring the PlotStyle string, see “Specify Line Style,
Color, and Markers” in the MATLAB documentation.

w
Input frequency values, specified as a row vector or a two-element cell array.
Possible values of w:

* Two-element cell array {wmin,wmax}, where wmin is the minimum frequency value
and wmax is the maximum frequency value.

* Row vector of frequency values.

For example, use logspace to generate a row vector with logarithmically-spaced
frequency values.

Specify frequency values in radians per TimeUnit, where TimeUnit is the time units of
the input dynamic system, specified in the TimeUnit property of sys.

Output Arguments

mag

Bode magnitude of the system response in absolute units, returned as a 3-D array with
dimensions (number of outputs) X (number of inputs) X (number of frequency points).

bode

* For a single-input, single-output (SISO) sys, mag(1,1,k) gives the magnitude of the
response at the kth frequency.

+ For MIMO systems, mag(1i, j,Kk) gives the magnitude of the response from the jth
input to the ith output.

You can convert the magnitude from absolute units to decibels using:
magdb = 20*logl0(mag)
phase

Phase of the system response in degrees, returned as a 3-D array with dimensions are
(number of outputs) X (number of inputs) X (number of frequency points).

+ For SISO sys, phase(1,1,k) gives the phase of the response at the kth frequency.

* For MIMO systems, phase(i, j,k) gives the phase of the response from the jth
input to the ith output.

wout

Response frequencies, returned as a row vector of frequency points. Frequency values are
in radians per TimeUnit, where TimeUnit is the value of the TimeUnit property of sys.

sdmag

Estimated standard deviation of the magnitude. sdmag has the same dimensions as mag.
If sys is not an identified LTI model, sdmag is [].

sdphase

Estimated standard deviation of the phase. sdphase has the same dimensions as phase.

If sys is not an identified LTI model, sdphase is [].

Examples

Bode Plot of Dynamic System

Create a Bode plot of the following continuous-time SISO dynamic system.

1-47

1

Functions — Alphabetical List

1-48

4018+ 75
sV 40,1287 + 09827

H(s) =

H = tf([1 0.1 7.5],[1 0.12 9 0 OD);
bode(H)

Bode Diagram

Magnitude {dB)
4
/

Fhase (deq)

-180 — —

10"
Frequency (rad/s)

10

bode automatically selects the plot range based on the system dynamics.

Bode Plot at Specified Frequencies

Create a Bode plot over a specified frequency range. Use this approach when you want to

focus on the dynamics in a particular range of frequencies.

bode

Magnitude {dB)

H = tf([1 0.1 7.5].[1 0.12 9 0 0O]);:
bode(H,{0.1,10})

Bode Diagram

I
_
T

!

[
—
T

&
o
.

-180
10" 10¢
Frequency (rad/s)

The cell array {0.1,10} specifies the minimum and maximum frequency values in
the Bode plot. When you provide frequency bounds in this way, the software selects

intermediate points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the

frequency response.

w = logspace(-1,1,100);
bode(H,w)

1-49

1 Functions — Alphabetical List

Bode Diagram

B
[
T

!

[
=
T
]
'xl.'

Magnitude {dB)

-180 ' = ——
101 10° 10"
Frequency (rad/s)

logspace defines a logarithmically spaced frequency vector in the range of 0.1-10 rad/s.

Compare Bode Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an equivalent discretized
system on the same Bode plot.

Create continuous-time and discrete-time dynamic systems.

= tf([1 0.1 7.5],[1 0.12 9 0 0]);

H
Hd = c2d(H,0.5,"zoh");

Create a Bode plot that displays both systems.

1-50

bode

Magnitude {dB)

bode(H,Hd)

Bode Diagram

-270 ' :
10°2 107" 10"
Frequency (rad/s)

10

The Bode plot of a discrete-time system includes a vertical line marking the Nyquist
frequency of the system.

Bode Plot with Specified Line and Marker Atiributes

Specify the color, linestyle, or marker for each system in a Bode plot using the
PlotStyle input arguments.

H=+tf([1 0.1 7.5],[1 0.12 9 0 OD);
Hd = c2d(H,0.5,"zoh");
bode(H, "r~,Hd, "b--")

1-51

1 Functions — Alphabetical List

Bode Diagram

Magnitude {dB)

-180 —_————= |

FPhase (deq)

-270 : :
102 101 10" 107
Frequency (rad/s)

The string "r" specifies a solid red line for the response of H. The string "b--" specifies
a dashed blue line for the response of Hd.

Obtain Magnitude and Phase Data

Compute the magnitude and phase of the frequency response of a dynamic system.

H = tf([1 0.1 7.5],[1 0.12 9 0 O]);
[mag phase wout] = bode(H);

Because H is a SISO model, the first two dimensions of mag and phase are both 1. The
third dimension is the number of frequencies in wout.

1-52

bode

Bode Plot of Identified Model

Compare the frequency response of a parametric model, identified from input/output
data, to a nonparametric model identified using the same data.

Identify parametric and non-parametric models based on data.

load iddata2 z2;

w = linspace(0,10*pi,128);

sys_np = spa(z2,[1.w);

sys_p = tfest(z2,2);

Using the spa and tfest commands requires System Identification Toolbox™ software.

Sys_np is a non-parametric identified model. Sys_p is a parametric identified model.

Create a Bode plot that includes both systems.

bode(sys_np,sys_p,w);
legend("sys-np*", "sys-p”)

1-53

1 Functions — Alphabetical List

Bode Diagram
From: ul To: y1

Magnitude {dB)

i
—
T

-720 :
10° 10’
Frequency (rad/s)

Obtain Magnitude and Phase Standard Deviation Data of Identified
Model

Compute the standard deviation of the magnitude and phase of an identified model. Use
this data to create a 3o plot of the response uncertainty.

Identify a transfer function model based on data. Obtain the standard deviation data for
the magnitude and phase of the frequency response.

load iddata2 z2;

sys p = tfest(z2,2);
w = linspace(0,10*pi,128);

1-54

bode

[mag,ph,w,sdmag,sdphase] = bode(sys_p,w);
Using the tfest command requires System Identification Toolbox™ software.

sys_p is an identified transfer function model. sdmag and sdphase contain the standard
deviation data for the magnitude and phase of the frequency response, respectively.

Use the standard deviation data to create a 3o plot corresponding to the confidence
region.

mag = squeeze(mag);

sdmag = squeeze(sdmag);
semilogx(w,mag, "b" ,w,mag+3*sdmag, "k: " ,w,mag-3*sdmag, "k:");

1-55

1 Functions — Alphabetical List

12 - ’ -

10 F

0 . .
10" 100 101 102

Alternatives

Use bodeplot when you need additional plot customization options.

More About

Algorithms
bode computes the frequency response using these steps:

1 Computes the zero-pole-gain (zpk) representation of the dynamic system.

1-56

bode

2 Evaluates the gain and phase of the frequency response based on the zero, pole, and
gain data for each input/output channel of the system.

a For continuous-time systems, bode evaluates the frequency response on the
1Imaginary axis s = jo and considers only positive frequencies.

b For discrete-time systems, bode evaluates the frequency response on the unit
circle. To facilitate interpretation, the command parameterizes the upper half of

the unit circle as

T
z=e'", 0fw<oy =—
» 'N T’

S

where T, is the sample time. wy is the Nyquist frequency. The equivalent
continuous-time frequency w is then used as the x-axis variable. Because

H(eijg) is periodic and has a period 2 wy, bode plots the response only up to
the Nyquist frequency wy. If you do not specify a sample time, bode uses T = 1.

. “Dynamic System Models”

See Also
freqgresp | nyquist | bodeplot | nichols

Introduced before R2006a

1-57

1 Functions — Alphabetical List

1-58

bodemag

Bode magnitude response of LTI models

Syntax

bodemag(sys)
bodemag(sys,{wmin,wmax})
bodemag(sys,w)
bodemag(sysl,sys2,...,sysN,w)

Description

bodemag(sys) plots the magnitude of the frequency response of the dynamic system
model sys (Bode plot without the phase diagram). The frequency range and number of
points are chosen automatically.

bodemag(sys,{wmin,wmax}) draws the magnitude plot for frequencies between wmin
and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input dynamic
system, specified in the TimeUnit property of sys).

bodemag(sys,w) uses the user-supplied vector W of frequencies, in rad/TimeUnit, at
which the frequency response is to be evaluated.

bodemag(sysl,sys2, ...,sysN,w) shows the frequency response magnitude of
several models sysl,sys2,. . .,sysN on a single plot. The frequency vector w is optional.
You can also specify a color, line style, and marker for each model. For example:

bodemag(sysl,"r",sys2,"y--",sys3, "gx")

See Also

bode | linearSystemAnalyzer

Introduced before R2006a

bodeoptions

bodeoptions

Create list of Bode plot options

Syntax

P = bodeoptions
P = bodeoptions(“cstprefs®)

Description

P = bodeoptions returns a default set of plot options for use with the bodeplot. You
can use these options to customize the Bode plot appearance using the command line.
This syntax is useful when you want to write a script to generate plots that look the same
regardless of the preference settings of the MATLAB session in which you run the script.

P = bodeoptions(“cstprefs®) initializes the plot options with the options you
selected in the Control System and System Identification Toolbox Preferences Editor.
For more information about the editor, see “Toolbox Preferences Editor” in the User's
Guide documentation. This syntax is useful when you want to change a few plot options
but otherwise use your default preferences. A script that uses this syntax may generate
results that look different when run in a session with different preferences.

The following table summarizes the Bode plot options.

Option

Description

Title, XLabel, YLabel Label text and style, specified as a structure with the following fields:

+ String — Label text, specified as a string
* FontSize — Default: 8

* FontWeight — Default: "Normal "

+ Font Angle — Default: "Normal *

+ Collor — Vector of RGB values ranging from 0 to 1. Default:
[0,0,0]

+ Interpreter — Default: "tex"

TickLabel

Tick label style, specified as a structure with the following fields:

1-59

1

Functions — Alphabetical List

Option

Description

+ FontSize Default: 8
+ FontWeight — Default: "Normal "
+ Font Angle — Default: "Normal ®

+ Collor — Vector of RGB values ranging from 0 to 1. Default:
[0,0,0]

Grid

Show or hide the grid
Specified as one of the following strings: "off" | "on*"
Default: "off"

GridColor

Color of the grid lines

Specified as one of the following: Vector of RGB values in the range
[0,1] 1 color string | "none*”.

Default: [0.15,0.15,0.15]

XlimMode, YlimMode

Axis limit modes. Default: "auto”

Xlim, Yim

Axes limits, specified as an array of the form [min,max]

I0Grouping Grouping of input-output pairs
Specified as one of the following strings: "none*
| "inputs” | "outputs® | "all*
Default: "none*
InputLabels, Input and output label styles
OutputLabels
InputVisible, Visibility of input and output channels
OutputVisible

ConfidenceRegionNumbe

Number of standard deviations to use to plotting the response confidence
region (identified models only).

Default: 1.

1-60

bodeoptions

Option

Description

FreqUnits

Frequency units, specified as one of the following strings:

- "Hz"

* "rad/second”

© "rpm
*+ "kHz"
* "MHz"
* "GHz*

* "rad/nanosecond”

* "rad/microsecond*

* "rad/millisecond”

* “rad/minute”

* "rad/hour*

* "rad/day*

+ “"rad/week*”

* "rad/month*

* "rad/year®

+ "cycles/nanosecond*®
+ "cycles/microsecond”
+ "cycles/millisecond”
+ "cycles/hour*

+ "cycles/day"

+ T"cycles/week*

+ "cycles/month*

+ "cycles/year"

Default: "rad/s*"

You can also specify "auto” which uses frequency units rad/TimeUnit
relative to system time units specified in the TimeUnit property. For

1-61

1 Functions — Alphabetical List

Option

Description

multiple systems with different time units, the units of the first system
are used.

FreqScale

Frequency scale
Specified as one of the following strings: "linear™ | "log"
Default: "log*

MagUnits

Magnitude units
Specified as one of the following strings: "dB" | "abs*®
Default: "dB*

MagScale

Magnitude scale
Specified as one of the following strings: "linear™ | "log"
Default: "linear”

MagVisible

Magnitude plot visibility
Specified as one of the following strings: "on® | "off"
Default: "on*

MagLowerLimMode

Enables a lower magnitude limit
Specified as one of the following strings: "auto® | "manual *
Default: "auto*

MagLowerLim

Specifies the lower magnitude limit

PhaseUnits

Phase units
Specified as one of the following strings: "deg” | "rad*
Default: "deg*”

PhaseVisible

Phase plot visibility
Specified as one of the following strings: "on" | "off"
Default: "on*®

PhaseWrapping

Enables phase wrapping
Specified as one of the following strings: "on" | "off"
Default: "off"

PhaseMatching

Enables phase matching
Specified as one of the following strings: "on" | "off"
Default: "off"

PhaseMatchingFreq

Frequency for matching phase

PhaseMatchingValue

The value to which phase responses are matched closely

1-62

bodeoptions

Examples

Create Bode Plot with Custom Settings

Create a Bode plot that suppresses the phase plot and uses frequency units Hz instead
of the default radians/second. Otherwise, the plot uses the settings that are saved in the
toolbox preferences.

First, create an options set based on the toolbox preferences.

opts = bodeoptions(“cstprefs®);

Change properties of the options set.

opts.PhaseVisible = "off";
opts.Frequnits = "Hz";

Create a plot using the options.

h = bodeplot(tf(l,[1,1]),0pts);

1-63

1 Functions — Alphabetical List

Bode Diagram

Magnitude {dB)
'_,.f’

i i Y

[=]

101 10" 107
Frequency (Hz)

Depending on your own toolbox preferences, the plot you obtain might look different from
this plot. Only the properties that you set explicitly, in this example PhaseVisible and
Frequnits, override the toolbox preferences.

Custom Plot Settings Independent of Preferences

Create a Bode plot that uses 14-point red text for the title. This plot should look the
same, regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set.
opts = bodeoptions;

Change properties of the options set.

1-64

bodeoptions

Magnitude (dB)

Phase (deg)

opts.Title_FontSize = 14
opts.Title.Color = [1 O

opts.Frequnits = "Hz";

6];

Create a plot using the options.

h = bodeplot(tf(1,[1,1]),0pts);

.45 F .

10° 107! 10"
Frequency [(Hz)

Because opts begins with a fixed set of options, the plot result is independent of the

toolbox preferences of the MATLAB session.

See Also

bodeplot | getoptions | setoptions | bode

1-65

1 Functions — Alphabetical List

Introduced in R2008a

1-66

bodeplot

bodeplot

Plot Bode frequency response with additional plot customization options

Syntax

h = bodeplot(sys)
bodeplot(sys)
bodeplot(sysl,sys2,...)
bodeplot(AX,...)
bodeplot(..., plotoptions)
bodeplot(sys,w)

Description

h = bodeplot(sys) plot the Bode magnitude and phase of the dynamic system model
sys and returns the plot handle h to the plot. You can use this handle to customize the
plot with the getoptions and setoptions commands.

bodeplot(sys) draws the Bode plot of the model sys. The frequency range and number
of points are chosen automatically.

bodeplot(sysl,sys2, ...) graphs the Bode response of multiple models sysl,sys2,...
on a single plot. You can specify a color, line style, and marker for each model, as in

bodeplot(sysl, "r*,sys2,"y--",sys3, "gx")
bodeplot(AX, . ..) plots into the axes with handle AX.

bodeplot(..., plotoptions) plots the Bode response with the options specified in
plotoptions. Type

help bodeoptions
for a list of available plot options. See “Match Phase at Specified Frequency.” on

page 1-70 for an example of phase matching using the PhaseMatchingFreq and
PhaseMatchingValue options.

1-67

1 Functions — Alphabetical List

1-68

bodeplot(sys,w) draws the Bode plot for frequencies specified by w. Whenw =
{wmin,wmax}, the Bode plot is drawn for frequencies between wmin and wmax (in rad/
TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in
the TimeUnit property of sys.). When w is a user-supplied vector w of frequencies, in
rad/TimeUnit, the Bode response is drawn for the specified frequencies.

See logspace to generate logarithmically spaced frequency vectors.

Examples

Change Bode Plot Options with Plot Handle

Generate a Bode plot.

sys = rss(5);
h = bodeplot(sys);

bodeplot

Bode Diagram

=
=

Magnitude {dB)
w &
[ma] <% [l
/

L2
=1}
T
N,

L
=

[+a RN
T

!

|

\

FPhase (deq)
i

10°
Frequency (rad/s)

10

Change the units to Hz and suppress the phase plot. To do so, edit properties of the plot

handle, h.

setoptions(h, "FrequUnits”®, "Hz", "PhaseVisible®,"off");

1-69

1 Functions — Alphabetical List

1-70

Magnitude {dB)

Bode Diagram

)
[{a]
T

Ll
oo
T

Ll
|
T

Lad
T
T

Ll
et
T

[
-

Frequency (Hz)

The plot automatically updates when you call setoptions.

Match Phase at Specified Frequency.

Create a Bode plot of a dynamic system.

sys = tf(1,[1 11);
h = bodeplot(sys);

10"

bodeplot

Magnitude {dB)

FPhase (deq)

Bode Diagram

0 ; ; ;
H....H‘"Hx
10 x‘\\ T
.
N
20 *\\ J
x\\
30T . .
“‘x\\
\N

40 . . .

0 _.___—_*—;-___h . .

"
\\
45t 1
\\\H
T,
—

a0 . . .

102 10" 10" 10 102

Frequency (rad/s)

Fix the phase at 1 rad/s to 750 degrees. To do so, get the plot properties. Then alter the
properties PhaseMatchingFreq and PhaseMatchingValue to match a phase to a
specified frequency.

p = getoptions(h);
p.PhaseMatching = "on”";
p-PhaseMatchingFreq = 1;
p.PhaseMatchingvValue = 750;

Update the plot.

setoptions(h,p);

1-71

1 Functions — Alphabetical List

Bode Diagram

0 . e .
—
Q -10} ™~ 1
t’ \'\
— \\
m \'\'\.
o . ..
3 =0T " i
: \'\\.
[\\\
ol .

an F e -
E i .

T
\\
'\.\x
n . . .
720 ey : :
~
— e
"
o .
= .,
o
@ 675 \ -
[¥3]
© .
L \\
o .
—
630 . . —
102 10" 10" 10 102

Frequency (rad/s)

The first bode plot has a phase of -45 degrees at a frequency of 1 rad/s. Setting the phase
matching options so that at 1 rad/s the phase is near 750 degrees yields the second Bode
plot. Note that, however, the phase can only be -45 + N*360, where N is an integer, and
so the plot 1s set to the nearest allowable phase, namely 675 degrees (or 2*360 - 45 =
675).

Display Confidence Regions of Identified Models

Compare the frequency responses of identified state-space models of order 2 and 6 along
with their 2 o confidence regions.

load iddatal
sysl = n4dsid(zl, 2) % discrete-time IDSS model of order 2

1-72

bodeplot

sys2 = n4sid(zl, 6) % discrete-time IDSS model of order 6

Both models produce about 76% fit to data. However, sys2 shows higher uncertainty in
its frequency response, especially close to Nyquist frequency as shown by the plot:

w = linspace(8,10*pi,256);
h = bodeplot(sysl,sys2,w);
setoptions(h, "PhaseMatching®, "on", "ConfidenceRegionNumberSD", 2);

Use the context menu by right-clicking Characteristics > Confidence Region to turn
on the confidence region characteristic.

Frequency Response of Identified Parametric and Nonparametric models

Compare the frequency response of a parametric model, identified from input/output
data, to a nonparametric model identified using the same data.

1 Identify parametric and non-parametric models based on data.

load iddata2 z2;

w = linspace(0,10*pi,128);
sys_np = spa(z2,[1.w);
sys p = tfest(z2,2);

spa and tfest require System Identification Toolbox software. Sys_np is a
nonparametric identified model. Sys_p is a parametric identified model.
2 Create a Bode plot that includes both systems.

opt = bodeoptions; opt.PhaseMatching = "on";

bodeplot(sys_np,sys_p,w, opt);

More About
Tips

You can change the properties of your plot, for example the units. For information on the
ways to change properties of your plots, see “Ways to Customize Plots”.

See Also

bodeoptions | getoptions | setoptions | bode

1-73

1 Functions — Alphabetical List

Introduced before R2006a

1-74

c2d

c2d

Convert model from continuous to discrete time

Syntax
sysd c2d(sys,Ts)

sysd c2d(sys, Ts,method)
sysd c2d(sys,Ts,opts)
[sysd,G] c2d(sys,Ts,method)
[sysd,G] c2d(sys,Ts,opts)

Description

sysd = c2d(sys,Ts) discretizes the continuous-time dynamic system model Sys using
zero-order hold on the inputs and a sample time of TS seconds.

sysd = c2d(sys,Ts,method) discretizes Sys using the specified discretization
method method.

sysd = c2d(sys,Ts,opts) discretizes Sys using the option set opts, specified using
the c2dOptions command.

[sysd,G] = c2d(sys,Ts,method) returns a matrix, G that maps the continuous
initial conditions xy and ug of the state-space model sys to the discrete-time initial state
vector x [0]. method is optional. To specify additional discretization options, use [sysd,
G] = c2d(sys,Ts,opts).

Input Arguments

sys

Continuous-time dynamic system model (except frequency response data models). sys
can represent a SISO or MIMO system, except that the "matched” discretization
method supports SISO systems only.

1-75

1 Functions — Alphabetical List

1-76

Sys can have input/output or internal time delays; however, the "matched” and
"impulse” methods do not support state-space models with internal time delays.

The following identified linear systems cannot be discretized directly:

* idgrey models with FcnType is "c". Convert to 1dss model first.
+ idproc models. Convert to idtf or idpoly model first.

For the syntax [sysd,G] = c2d(sys,Ts,opts), sys must be a state-space model.
Ts

Sample time.

method

String specifying a discretization method:

* "zoh" — Zero-order hold (default). Assumes the control inputs are piecewise constant
over the sample time Ts.

+ "foh" — Triangle approximation (modified first-order hold). Assumes the control
inputs are piecewise linear over the sample time TsS.

* "impulse® — Impulse invariant discretization.
*+ "tustin® — Bilinear (Tustin) method.
* "matched® — Zero-pole matching method.

For more information about discretization methods, see “Continuous-Discrete Conversion
b
Methods”.

opts

Discretization options. Create opts using c2dOptions.

Output Arguments
sysd

Discrete-time model of the same type as the input system sys.

c2d

When sys is an identified (IDLTI) model, sysd:

* Includes both measured and noise components of sys. The innovations variance A of
the continuous-time identified model sys, stored in its NoiseVarianceproperty, is
interpreted as the intensity of the spectral density of the noise spectrum. The noise
variance in sysd is thus 1/ Ts.

* Does not include the estimated parameter covariance of sys. If you want to translate
the covariance while discretizing the model, use translatecov.

G

Matrix relating continuous-time initial conditions xy and u of the state-space model sys
to the discrete-time initial state vector x [0], as follows:

x[O]:G-{xO}

U

For state-space models with time delays, c2d pads the matrix G with zeroes to account
for additional states introduced by discretizing those delays. See “Continuous-Discrete
Conversion Methods” for a discussion of modeling time delays in discretized systems.

Examples

Discretize a Transfer Function

Discretize the following continuous-time transfer function:

s — 1

H(Y = [1.5= : i i
V3 . .\'3+-|.\'+5

This system has an input delay of 0.3 s. Discretize the system using the triangle (first-
order-hold) approximation with sample time Ts = 0.1 s.

H=tf([1 -1].[21 4 5], InputDelay”, 0.3);
Hd = c2d(H,0.1,"foh");

1-77

1 Functions — Alphabetical List

Compare the step responses of the continuous-time and discretized systems.

step(H,"-",Hd,"--")

Step Response

0.15 T T

Amplitude

0.25 -

Time (seconds)

Discretize Model with Fractional Delay Asborbed into Coefficients

Discretize the following delayed transfer function using zero-order hold on the input, and

a 10-Hz sampling rate.

10

His) = _:--II.E:'n.f)
(8) = ¢ & +3s+ 10

1-78

c2d

h = tf(10,[1 3 10],"iodelay”,0.25);
hd = c2d(h, 0.1)
hd =
0.01187 z~2 + 0.06408 z + 0.009721
z2nM(-3) *

z"2 - 1.655 z + 0.7408

Sample time: 0.1 seconds
Discrete-time transfer function.

In this example, the discretized model hd has a delay of three sampling periods. The
discretization algorithm absorbs the residual half-period delay into the coefficients of hd.

Compare the step responses of the continuous-time and discretized models.

step(h,"--",hd,"-")

1-79

1 Functions — Alphabetical List

Step Response

o
s
T

Amplitude

=
i
T

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (seconds)

en

Discretize Model With Approximated Fractional Delay

Discretize a state-space model with time delay, using a Thiran filter to model fractional
delays:

sys = ss(tf([1, 2], [1, 4, 2])); % create a state-space model
sys. InputDelay = 2.7 % add input delay
This command creates a continuous-time state-space model with two states, as the

output shows:
a =

x1l x2
X1l -4 -2

1-80

c2d

yl

Input delays (listed by channel): 2.7

Continuous-time model.

Use c2dOptions to create a set of discretization options, and discretize the model. This
example uses the Tustin discretization method.

opt = c2dOptions("Method",
sysdl = c2d(sys, 1, opt)

These commands yield the result

a =

X1
X2
X3
X4
x5

X1
X2
X3
X4
x5

yl

x1
-0.4286
0.2857
0

0

0

ul
0.002058
0.001029
8

0

0

x1
0.2857

X2
-0.5714
0.7143
0

0

0

X2
0.7143

"tustin®, "FractDelayApproxOrder®, 3);
% 1s sample time

X3 x4 x5
-0.00265 0.06954 2.286
-0.001325 0.03477 1.143
-0.2432 0.1449 -0.1153
0.25 0 0

0 0.125 0

X3 X4 x5
-0.001325 0.03477 1.143

1-81

1 Functions — Alphabetical List

1-82

d =
ul
yl 0.001029

Sample time: 1
Discrete-time model.

The discretized model now contains three additional states X3, x4, and X5 corresponding
to a third-order Thiran filter. Since the time delay divided by the sample time is 2.7, the
third-order Thiran filter (FractDelayApproxOrder = 3) can approximate the entire
time delay.

Discretized Identified Model

Discretize an identified, continuous-time transfer function and compare its performance
against a directly estimated discrete-time model

Estimate a continuous-time transfer function and discretize it.
load iddatal

syslc = tfest(zl,2);

sysld = c2d(syslc,0.1,"zoh");

Estimate a second order discrete-time transfer function.

sys2d = tfest(z1,2,"Ts",0.1);

Compare the two models.

compare(zl,sysld,sys2d)

c2d

Time Response Comparison

15

z1 (y1}
sysid: 7O.77%
sys2d: 69.3%

107

Amplitude
yi
o

-10

-15 : ; ' ; '
5 10 15 20 25 30
Time (seconds)

The two systems are virtually identical.

Build Predictor Model

Discretize an identified state-space model to build a one-step ahead predictor of its
response.

load iddata2

sysc = ssest(z2,4);

sysd = c2d(sysc,0.1,"zoh");

[A,B,C,D,K] = idssdata(sysd);

Predictor = ss(A-K*C,[K B-K*D],C,[0 D],0.-1);

The Predictor is a two input model which uses the measured output and input signals
([z1l.y z1.u]) to compute the 1-step predicted response of sysc.

1-83

1

Functions — Alphabetical List

1-84

More About
Tips

* Use the syntax sysd = c2d(sys, Ts,method) to discretize sys using the default
options for method. To specify additional discretization options, use the syntax sysd
= c2d(sys,Ts,opts).

* To specify the tustin method with frequency prewarping (formerly known as the
"prewarp” method), use the PrewarpFrequency option of c2dOptions.

Algorithms

For information about the algorithms for each c2d conversion method, see “Continuous-

Discrete Conversion Methods”.

. “Dynamic System Models”

. “Discretize a Compensator”
. “Continuous-Discrete Conversion Methods”
See Also

d2c | d2d | c2dOptions | thiran | translatecov

Introduced before R2006a

c2dOptions

c2dOptions

Create option set for continuous- to discrete-time conversions

Syntax

opts
opts

Description

opts

c2dOptions
c2dOptions("OptionName®, OptionValue)

c2dOptions returns the default options for c2d.

opts = c2dOptions(“OptionName=®, OptionValue) accepts one or more comma-
separated name/value pairs that specify options for the c2d command. Specify
OptionName inside single quotes.

Input Arguments

Name-Value Pair Arguments

"Method™

Discretization method, specified as one of the following values:

"zoh*

"foh"

“impulse-
"tustin®

Zero-order hold, where c2d assumes the control inputs are piecewise
constant over the sample time Ts.

Triangle approximation (modified first-order hold), where c2d
assumes the control inputs are piecewise linear over the sample time
Ts. (See [1], p. 228.)

Impulse-invariant discretization.

Bilinear (Tustin) approximation. By default, c2d discretizes

with no prewarp and rounds any fractional time delays to the
nearest multiple of the sample time. To include prewarp, use the
PrewarpFrequency option. To approximate fractional time delays,
use theFractDe layApproxOrder option.

1-85

1 Functions — Alphabetical List

1-86

"matched” Zero-pole matching method. (See [1], p. 224.) By default, c2d
rounds any fractional time delays to the nearest multiple of the
sample time. To approximate fractional time delays, use the
FractDelayApproxOrder option.

Default: "zoh*
"PrewarpFrequency”

Prewarp frequency for "tustin® method, specified in rad/TimeUnit, where TimeUnit
is the time units, specified in the TimeUnit property, of the discretized system. Takes
positive scalar values. A value of 0 corresponds to the standard "tustin® method
without prewarp.

Default: 0
"FractDelayApproxOrder*

Maximum order of the Thiran filter used to approximate fractional delays in the
"tustin® and "matched” methods. Takes integer values. A value of 0 means that c2d
rounds fractional delays to the nearest integer multiple of the sample time.

Default: 0

Examples

Discretize two models using identical discretization options.

% generate two arbitrary continuous-time state-space models
sysl = rss(3, 2, 2);

sys2 = rss(4, 4, 1);

Use c2dOptions to create a set of discretization options.

opt = c2dOptions("Method®, "tustin®, "PrewarpFrequency”, 3.4);
Then, discretize both models using the option set.

dsysl c2d(sysl, 0.1, opt); % 0.1ls sample time

dsys2 = c2d(sys2, 0.2, opt); % 0.2s sample time

The c2dOptions option set does not include the sample time Ts. You can use the same
discretization options to discretize systems using a different sample time.

c2dOptions

References

[1] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of Dynamic Systems
(3rd Edition), Prentice Hall, 1997.

See Also
cad

Introduced in R2010a

1-87

1 Functions — Alphabetical List

1-88

canon

State-space canonical realization

Syntax

csys = canon(sys, type)
[csys,T]= canon(sys, type)
csys = canon(sys, "modal ", condt)

Description

csys = canon(sys,type) transforms the linear model Sys into a canonical state-
space model csys. The argument type specifies whether csys is in modal or companion
form.

[csys,T]= canon(sys, type) also returns the state-coordinate transformation T that
relates the states of the state-space model sys to the states of csys.

csys = canon(sys, "modal " ,condt) specifies an upper bound condt on the condition
number of the block-diagonalizing transformation.

Input Arguments
sSys
Any linear dynamic system model, except for frd models.

type

String specifying the type of canonical form of csys. type can take one of the two
following values:

+ "modal® — convert sys to modal form.

+ "companion® — convert Sys to companion form.

canon

condt

Positive scalar value specifying an upper bound on the condition number of the block-
diagonalizing transformation that converts sys to csys. This argument is available only
when type is "modal *.

Increase condt to reduce the size of the eigenvalue clusters in the A matrix of csys.
Setting condt = InT diagonalizes A.

Default: 1e8

Output Arguments
csys

State-space (Ss) model. CSys is a state-space realization of Sys in the canonical form
specified by type.

T

Matrix specifying the transformation between the state vector x of the state-space model
sys and the state vector x, of csys:
x.=Tx

This argument is available only when Sys is state-space model.

Examples

This example uses canon to convert a system having doubled poles and clusters of close
poles to modal canonical form.

Consider the system G having the following transfer function:

(s—1)(s+1)

Gls)= 1003(s+ 10)(5+10.0001)(s —(1+) (s— (1-1))*

To create a linear model of this system and convert it to modal canonical form, enter:

1-89

1 Functions — Alphabetical List

G = zpk([1 -1],[0 -10 -10.0001 1+1i 1-1i 1+1i 1-1i],100);
Gc = canon(G, "modal*);

The system G has a pair of nearby poles at s = —10 and s =—-10.0001. G also has two
complex poles of multiplicity 2 at s =1 +i and s = 1 —i. As a result, the modal form,
has a block of size 2 for the two poles near s = —10, and a block of size 4 for the complex
eigenvalues. To see this, enter the following command:

Gc.A

ans =

0 0 0 0 0 0 0
0 1.0000 1.0000 0 0 0 0
0 -1.0000 1.0000 2.0548 0 0 0
0 0 0 1.0000 1.0000 0 0
0 0 0 -1.0000 1.0000 0 0
0 0 0 0 0 -10.0000 8.0573
0 0 0 0 0 0 -10.0001

To separate the two poles near s = —10, you can increase the value of condt. For
example:

Gec2 = canon(G, "modal*,1el10);

Gc2.A

ans =
0 0 0 0 0 0 0
0 1.0000 1.0000 0 0 0 0
0 -1.0000 1.0000 2.0548 0 0 0
0 0 0 1.0000 1.0000 0 0
0 0 0 -1.0000 1.0000 0 0
0 0 0 0 0 -10.0000 0
0 0 0 0 0 0 -10.0001

The A matrix of Gc2 includes separate diagonal elements for the poles near s = —10. The
cost of increasing the maximum condition number of A is that the B matrix includes some
large values.

format shortE
Gec2.B

ans =
3.2000e-001
-6.5691e-003

5.4046e-002
-1.9502e-001

1-90

canon

1.0637e+000
3.2533e+005
3.2533e+005

This example estimates a state-space model that is freely parameterized and convert to
companion form after estimation.

load icEngine.mat
z = iddata(y,u,0.04);

FreeModel = n4sid(z,4, " InputDelay”,b2);
CanonicalModel = canon(FreeModel, "companion®)

Obtain the covariance of the resulting form by running a zero-iteration update to model
parameters.

opt = ssestOptions; opt.SearchOption.Maxlter = 0;
CanonicalModel = ssest(z, CanonicalModel, opt)

Compare frequency response confidence bounds of FreeModel to CanonicalModel.

h = bodeplot(FreeModel, CanonicalModel)

the bounds are identical.

More About

Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by-1 for
real eigenvalues and 2-by-2 for complex eigenvalues. However, if there are repeated
eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (1;,0 * jw,A;), the modal A matrix is of the

form
A4 0 0 O
0 o w O
0 -o o O
0 0 0 A

1-91

1 Functions — Alphabetical List

1-92

Companion Form
In the companion realization, the characteristic polynomial of the system appears
explicitly in the rightmost column of the A matrix. For a system with characteristic

polynomial

n n-1
p(s) =s" +oys” +..+a,_1s+a,

the corresponding companion A matrix is

0 0 -«
100 0 -o, -1
Az 10
0 :
0 10 -0
0 L -0 |

The companion transformation requires that the system be controllable from the first
input. The companion form is poorly conditioned for most state-space computations;
avoid using it when possible.

Algorithms

The canon command uses the bdschur command to convert sys into modal form and
to compute the transformation T. If Sys is not a state-space model, the algorithm first
converts it to state space using Ss.

The reduction to companion form uses a state similarity transformation based on the
controllability matrix [1].

References

[1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also

ctrb | ctrbf | ss2ss

canon

Introduced before R2006a

1-93

1 Functions — Alphabetical List

care

Continuous-time algebraic Riccati equation solution

Syntax
[X,L,G] = care(A,B,Q)
[X,L.G] = care(A,B,Q,R,S,E)

[X,L,G,report] = care(A,B,Q,...)
[X1,X2,D,L] = care(A,B,Q, ..., "factor™)

Description

[X,L,G] = care(A,B,Q) computes the unique solution X of the continuous-time
algebraic Riccati equation

ATX+XA-xBBTX+Q=0

The care function also returns the gain matrix, G = R'BTXE.

[X,L,G] = care(A,B,Q,R,S,E) solves the more general Riccati equation
ATXE+E"xA-(ETXB+S)RTB'XE+ST)+Q=0

When omitted, R, S, and E are set to the default values R=1, S=0, and E=1I. Along with the

solution X, care returns the gain matrix G = R_l(BTXE + ST) and a vector L of closed-
loop eigenvalues, where

L=eig(A-B*G,E)
[X,L,G,report] = care(A,B,Q,...) returns a diagnosis report with:

* -1 when the associated Hamiltonian pencil has eigenvalues on or very near the
imaginary axis (failure)

* -2 when there is no finite stabilizing solution X

1-94

care

* The Frobenius norm of the relative residual if X exists and is finite.
This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = care(A,B,Q, ..., "factor"™) returns two matrices X1, X2 and a
diagonal scaling matrix D such that X = D*(X2/X1)*D.

The vector L contains the closed-loop eigenvalues. All outputs are empty when the
associated Hamiltonian matrix has eigenvalues on the imaginary axis.

Examples

Example 1
Solve Algebraic Riccati Equation

Given

A=[_13 ﬂ B=m C=[1 -1] R=3

you can solve the Riccati equation

ATx+xA-XBR'BTx+cTc=0

by

a = [-3 2;1 1]
b=1[0; 1]
c = [1 -1]

r =3

[x,1,9] = care(a,b,c"*c,r)
This yields the solution

X

X =

0.5895 1.8216

1-95

1 Functions — Alphabetical List

1-96

1.8216 8.8188

You can verify that this solution is indeed stabilizing by comparing the eigenvalues of a
and a-b*g.

[eig(a) eig(a-b*g)]

ans =

-3.4495 -3.5026
1.4495 -1.4370

Finally, note that the variable I contains the closed-loop eigenvalues eig(a-b*g).

1 =
-3.5026
-1.4370

Example 2
Solve H-infinity (H_,)-like Riccati Equation
To solve the H_, -like Riccati equation

ATX+ XA +X(v2B,Bf -B,BIHX +CcTC=0

rewrite it in the care format as

_1 T
_ B
Lo By, 7o
0o I Bg

| —

R

ATX + XA -X[B,,B,]
B

You can now compute the stabilizing solution X by

B = [B1 , B2]

ml size(B1,2)

m2 size(B2,2)

R = [-g™"2*eye(ml) zeros(ml,m2) ; zeros(m2,ml) eye(m2)]

care

X = care(A,B,C"*C,R)

Limitations

The (A, B) pair must be stabilizable (that is, all unstable modes are controllable). In
addition, the associated Hamiltonian matrix or pencil must have no eigenvalue on the
imaginary axis. Sufficient conditions for this to hold are (@, A) detectable when S =0

and R>0, or
Q S
>0

More About

Algorithms

care implements the algorithms described in [1]. It works with the Hamiltonian matrix

when R is well-conditioned and E = I ; otherwise it uses the extended Hamiltonian pencil
and QZ algorithm.

References

[1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software
for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 1746-1754

See Also
dare | lyap

Introduced before R2006a

1-97

1

Functions — Alphabetical List

1-98

chgFreqUnit

Change frequency units of frequency-response data model

Syntax

sys_new = chgFrequnit(sys,newfrequnits)

Description
sys_new = chgFrequnit(sys, newfrequnits) changes units of the frequency points

in sys to newfrequnits. Both Frequency and FrequencyUnit properties of sys
adjust so that the frequency responses of sys and sys_new match.

Input Arguments

sys

Frequency-response data (frd, idfrd, or genfrd) model
newfrequnits

New units of frequency points, specified as one of the following strings:

* "rad/TimeUnit"
+ "cycles/TimeUnit"

* "rad/s"
c "Hz*

* "kHz"

* "MHz"

* "GHz*

* “rpm”

chgFreqUnit

rad/TimeUnit and cycles/TimeUnit express frequency units relative to the system
time units specified in the TimeUnit property.

Default: "rad/TimeUnit"

Output Arguments

Sys_new

Frequency-response data model of the same type as sys with new units of frequency
points. The frequency response of Sys_new is same as Sys.

Examples

This example shows how to change units of the frequency points in a frequency-response
data model.

1

Create a frequency-response data model.

load AnalyzerData;
sys = frd(resp,freq);

The data file AnalyzerData has column vectors freq and resp. These vectors
contain 256 test frequencies and corresponding complex-valued frequency response
points, respectively. The default frequency units of sys is rad/TimeUnit, where
TimeUnit is the system time units.

Change the frequency units.
sysl = chgFrequnit(sys, "rpm-);

The FrequencyUnit property of sysl is rpm.
Compare the Bode responses of sys and sys1.

bodeplot(sys, "r-",sysl,"y--");
legend("sys”, "sysl®)

The magnitude and phase of sys and sysl match.

1-99

1 Functions — Alphabetical List

Bode Diagram

Magnitude {dB)

Phase (deg)

107! 10 10’ 107

Frequency (rad/s)

4 (Optional) Change the FrequencyUnit property of Sys to compare the Bode
response with the original system.

SysS2=sys;
sys2.FrequencyUnit = "rpm";
bodeplot(sys, "r",sys2, "gx");
legend("sys”®, "sys2");

Changing the FrequencyUnit property changes the original system. Therefore,
the Bode responses of sys and sys2 do not match. For example, the original corner

frequency at 2 rad/s changes to 2 rpm (or 0.2 rad/s).

1-100

chgFreqUnit

Bode Diagram

Magnitude {dB)

Phase (deg)

0z 107 10° 107

Frequency (rad/s)

More About

Tips
+ Use chgFregunit to change the units of frequency points without modifying system
behavior.

See Also
chgTimeUnit | frd

Introduced in R2011a

1-101

1 Functions — Alphabetical List

chgTimeUnit

Change time units of dynamic system

Syntax

sys_new = chgTimeUnit(sys,newtimeunits)

Description

sys_new = chgTimeUnit(sys,newtimeunits) changes the time units of Sys to
newtimeunits. The time- and frequency-domain characteristics of sys and sys_new
match.

Input Arguments
sys

Dynamic system model
newtimeunits

New time units, specified as one of the following strings:

* "nanoseconds”
* "microseconds”
+ "milliseconds”
+ "seconds”

* "minutes”

* "hours”
+ "days”
+ "weeks"

1-102

chgTimeUnit

* "months*

+ "years”

Default: "seconds”

Output Arguments
Sys_new

Dynamic system model of the same type as sys with new time units. The time response
of Ssys_new is same as Sys.

If sys is an identified linear model, both the model parameters as and their minimum
and maximum bounds are scaled to the new time units.

Examples

Change Time Units of Dynamic System Model

Create a transfer function model.

num = [4 2];
den = [1 3 10];
sys = tf(num,den);

By default, the time unit of sys is "seconds”. Create a new model with the time units
changed to minutes.

sysl = chgTimeUnit(sys, "minutes”);

This command sets the TimeUnit property of sysl to "minutes”, without changing the
dynamics. To confirm that the dynamics are unchanged, compare the step responses of
sys and sysl.

stepplot(sys, "r",sysl, "y--");
legend("sys”, "sysl®);

1-103

1 Functions — Alphabetical List

Step Response

_ SYS
081 J 5ys1

Amplitude

en

1.5 2 2.
Time (seconds)

_
[’
()]

The step responses are the same.

If you change the TimeUnit property of the system instead of using chgTimeUnit, the
dynamics of the system do change. To see this, change the TimeUnit property of a copy
of sys and compare the step response with the original system.

Sys2 = sys;
sys2.TimeUnit = "minutes”;
stepplot(sys, "r",sys2, "gx");
legend("sys”, "sys27);

1-104

chgTimeUnit

Step Response
0.9 - - - -
Y5

0.8 %%5%(W ><51’r52]

A
o7l X %]

: s
. *
e *
06 W _

x *
1l *
05 = P I
= b
[« e
£ 04" X 1
< ®

Y *

0.3 f % .
*
e
0.2
0.1
0
50 100 150 200 250
Time (seconds)

The step responses of sys and sys2 do not match. For example, the original rise time of

0.04 seconds changes to 0.04 minutes.

“Specify Model Time Units”

More About

Tips

Use chgTimeUnit to change the time units without modifying system behavior.

1-105

1 Functions — Alphabetical List

See Also
chgFrequnit | tfF | zpk | ss | frd | pid

Introduced in R2011a

1-106

conj

conj

Form model with complex conjugate coefficients

Syntax

sysc = conj(sys)

Description
sysc = conj(sys) constructs a complex conjugate model sysc by applying complex

conjugation to all coefficients of the LTI model sys. This function accepts LTI models in
transfer function (TF), zero/pole/gain (ZPK), and state space (SS) formats.

Examples

If sys is the transfer function

@+i)/(s+i)

then conj (sys) produces the transfer function
@-i1)/(s-1)

This operation is useful for manipulating partial fraction expansions.

See Also
append | ss | tF | zpk

Introduced before R2006a

1-107

1 Functions — Alphabetical List

1-108

connect

Block diagram interconnections of dynamic systems

Syntax

sysc = connect(sysl, -..,sysN, inputs,outputs)

sysc = connect(sysl,...,sysN, inputs,outputs,APs)

sysc = connect(blksys,connections, inputs,outputs)

sysc = connect(,opts)

Description

sysc = connect(sysl, ...,sysN, inputs,outputs) connects the block diagram
elements sysl, . . . ,sysN based on signal names. The block diagram elements

sysl, ... ,sysN are dynamic system models. These models can include summing

junctions that you create using sumblk. The connect command interconnects the block
diagram elements by matching the input and output signals that you specify in the
InputName and OutputName properties of sysl, .. .,sysN. The aggregate model sysc
1s a dynamic system model having inputs and outputs specified by inputs and outputs
respectively.

sysc = connect(sysl,...,sysN, inputs,outputs,APs) inserts an
AnalysisPoint at every signal location specified in APs. Use analysis points to mark
locations of interest which are internal signals in the aggregate model. For instance, a
location at which you want to extract a loop transfer function or measure the stability
margins is a location of interest.

sysc = connect(blksys,connections, inputs,outputs) uses index-based
interconnection to build sysc out of an aggregate, unconnected model blksys. The
matrix connections specifies how the outputs and inputs of blksys interconnect. For
index-based interconnections, inputs and outputs are index vectors that specify which
inputs and outputs of blksys are the external inputs and outputs of sysc. This syntax
can be convenient when you do not want to assign names to all inputs and outputs of all
models to connect. However, in general, it is easier to keep track of named signals.

sysc = connect(,0pts) builds the interconnected model using additional
options. You can use opts with the input arguments of any of the previous syntaxes.

connect

Input Arguments
sysl, ...,sysN

Dynamic system models that correspond to the elements of your block diagram.

For example, the elements of your block diagram can include one or more tf or ss
models that represent plant dynamics. Block diagram elements can also include a
pidor I'tiblock.pid model representing a controller. You can also include one or
more summing junction that you create using sumblk. Provide multiple arguments
sysl, .. .,sysN to represent all of the block diagram elements and summing junctions.

inputs

For name-based interconnection, a string or string vector that specifies the inputs of
the aggregate model sysc. The strings in inputs must correspond to entries in the
InputName or OutputName property of one or more of the block diagram elements
sysl, ...,sysN.

outputs

For name-based interconnection, a string or string vector that specifies the outputs of
the aggregate model sysc. The strings in outputs must correspond to entries in the
OutputName property of one or more of the block diagram elements sys1, . . . ,sysN.

APs

A string or string vector that specifies locations (internal signals) of interest in

the aggregate model. The resulting model contains an analysis point at each such
location. (See AnalysisPoint). Each string in APS must correspond to an entry in
the InputName or OutputName property of one or more of the block diagram elements
sysl, ...,sysN.

blksys
Unconnected aggregate model. To obtain blksys, use append to join dynamic system

models of the elements of your block diagram. For example, if your block diagram
contains dynamic system models C, G, and S, create blksys with the following command:

blksys = append(C,G,S)

1-109

1 Functions — Alphabetical List

1-110

connections

Matrix that specifies the connections and summing junctions of the block diagram. Each
row of connections specifies one connection or summing junction in terms of the input
vector U and output vector y of the unconnected aggregate model blksys. For example,
the row:

[3 2 0 0]

specifies that y(2) connects into u(3). The row
[7 2 -15 6]

indicates that y(2)-y(15)+y(6) feeds into u(7).

If you do not specify any connection for a particular input or output, connect omits that
input or output from the aggregate model.

opts

Additional options for interconnection, specified as an options set that you create with
connectOptions.

Output Arguments
sysc

Interconnected system, returned as either a state-space model or frequency-response
model. The type of model returned depends on the input models. For example:

* Interconnecting numeric LTI models (other than frd models) returns an ss model.

* Interconnecting a numeric LTI model with a Control Design Block returns
a generalized LTI model. For instance, interconnecting a t¥ model with an
Itiblock.pid Control Design Block returns a genss.

+ Interconnecting any model with frequency-response data model returns a frequency
response data model.

By default, connect automatically discards states that do not contribute to the I/O
transfer function from the specified inputs to the specified outputs of the interconnected
model. To retain the unconnected states, set the Simplify option of connectOptions to
false. For example:

connect

opt = connectOptions("Simplify”,false);
sysc = connect(sysl,sys2,sys3,r","y",opt);

Examples

SISO Feedback Loop

Create an aggregate model of the following block diagram from r to y.

e
r—- C o = ¥

Create C and G, and name the inputs and outputs.

= pid(2,1);

u= "e";

Wy = "ut;

= zpk([1.[-1.-11.1);
u= "u";

= 'y';

OOOOO0

<

The notations C.u and C.y are shorthand expressions equivalent to C. InputName and
C.OutputName, respectively. For example, entering C.u = "e" is equivalent to entering
C.InputName = "e". The command sets the InputName property of C to the value "e".

Create the summing junction.
Sum = sumblk("e = r - y");

Combine C, G, and the summing junction to create the aggregate model from r to y.

T = connect(G,C,Sum,"r","y");

connect automatically joins inputs and outputs with matching names.

MIMO Feedback Loop

Create the control system of the previous example where G and C are both 2-input, 2-
output models.

1-111

1 Functions — Alphabetical List

1-112

C = [pid(2,1),0;0,pid(5,6)];
C.InputName = "e~";
C.OutputName = "u";
G = ss(-1,[1,2],[1:;-1].0);

-InputName = "u-;
-OutputName = "y";

G
G

When you specify single names for vector-valued signals, the software automatically
performs vector expansion of the signal names. For example, examine the names of the
inputs to C.

C. InputName

ans =

e(1)"
e (2)"

Create a 2-input, 2-output summing junction.
Sum = sumblk("e = r-y",2);
sumblk also performs vector expansion of the signal names.

Interconnect the models to obtain the closed-loop system.
T = connect(G,C,Sum,"r","y");

The block diagram elements G, C, and Sum are all 2-input, 2-output models. Therefore,
connect performs the same vector expansion. connect selects all entries of the two-
input signals "r" and "y" as inputs and outputs to T, respectively. For example,
examine the input names of T.

T. InputName

ans =

“r(1)"
()"

Feedback Loop With Analysis Point Inserted by connect

Create a model of the following block diagram from r to y. Insert an analysis point at an
internal location, u.

connect

Create C and G, and name the inputs and outputs.

= pid(2,1);
-InputName = "e~";
-OutputName = "u”;
= zpk([1.[-1.-1].1);
-InputName = "u-;
-OutputName = "y";

OOOO0OO0

Create the summing junction.
Sum = sumblk("e = r - y");

Combine C, G, and the summing junction to create the aggregate model, with an analysis
point at u.

T = connect(G,C,Sum,"r","y","u")

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, anc
AnalysisPoints_: Analysis point, 1 channels, 1 occurrences.

Type "ss(T)" to see the current value, "get(T)" to see all properties, and "T.Blocks" 1

The resulting T is a genss model. The connect command creates the AnalysisPoint
block, AnalysisPoints_, and inserts it into T. To see the name of the analysis point
channel in AnalysisPoints_, use getPoints.

getPoints(T)

ans =

1-113

1 Functions — Alphabetical List

1-114

The analysis point channel is named "u”. You can use this analysis point to extract
system responses. For example, the following commands extract the open-loop transfer at
u and the closed-loop response at y to a disturbance injected at w.

L = getLoopTransfer(T, "u",-1);

Tuy = getlOTransfer(T, u","y");

T is equivalent to the following block diagram, where AP_u designates the
AnalysisPoint block AnalysisPoints_ with channel name u.

Index-Based Interconnection

Create an aggregate model of the following block diagram from r to y using index-based
interconnection.

=]
r— - C G = ¥

connect

Create C, G, and the unconnected aggregate model blksys.

pid(2,1);
zpk(l.[-1,-1]1,1);

C =
G =
blksys = append(C,G);

The inputs u(l) ,u(2) of blksys correspond to the inputs of C and G, respectively. The
outputs w(1) ,w(2) of blksys correspond to the outputs of C and G, respectively.

Create the matrix connections, which specifies which outputs of blksys connect to
which inputs of blksys.

connections = [2 1; 1 -2];

The first row indicates that w(1) connects to u(2); in other words, that the output of
C connects to the input of G. The second row indicates that -w(2) connects to u(1); in
other words, that the negative of the output of G connects to the input of C.

Create the connected aggregate model from r to y.

T = connect(blksys,connections,1,2)

The last two arguments specify the external inputs and outputs in terms of the indices
of blksys. The argument 1 specifies that the external input connects to u(1). The last
argument, 2, specifies that the external output connects from w(2).

More About

“Multi-Loop Control System”
. “MIMO Control System”
. “MIMO Feedback Loop”
. “Mark Analysis Points in Closed-Loop Models”

See Also

| append | sumblk | AnalysisPoint | feedback | parallel | series | Ift |
connectOptions

Introduced before R2006a

1-115

1 Functions — Alphabetical List

1-116

connectOptions

Options for the connect command

Syntax
opt = connectOptions
opt = connectOptions(Name,Value)

Description
opt = connectOptions returns the default options for connect.

opt = connectOptions(Name,Value) returns an options set with the options
specified by one or more Name, Value pair arguments.

Examples

Retain Unconnected States in Model Interconnection

Use connectOptions to cause the connect command to retain unconnected states in
an interconnected model.

Suppose you have dynamic system models sysl, sys2, and sys3. Combine these
dynamic system models to build an interconnected model with input "r® and output "y".
Set the option to retain states in the model that do not contribute to the dynamics in the
path from "r*® or "y".

opt = connectOptions("Simplify”,false);
sysc = connect(sysl,sys2,sys3,"r","y",opt);

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

connectOptions

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "Simplify~,false

"Simplify" — Automatic elimination of unconnected states
true (default) | false

Automatic elimination of unconnected states, specified as either true or false.

+ true — connect eliminates all states that do not contribute to the I/O transfer
function from the specified inputs to the specified outputs of the interconnected
system.

+ Ffalse — connect retains unconnected states. This option can be useful, for example,
when you want to compute the interconnected system response from known initial
state values of the components.

Data Types: logical

Output Arguments

opt — Options for connect
connectOptions options set

Options for connect, returned as a connectOptions options set. Use opt as the last
argument to connect when interconnecting models.

See Also

connect

Introduced in R2013b

1-117

1 Functions — Alphabetical List

1-118

controlSystemDesigner

Interactively design and tune SISO feedback loops

Syntax

controlSystemDesigner
controlSystemDesigner(plant)
controlSystemDesigner(plant,comp)
controlSystemDesigner(plant,comp,sensor,prefilt)
controlSystemDesigner(views)
controlSystemDesigner(views,plant,comp)
controlSystemDesigner(initdata)
controlSystemDesigner(sessiondata)

Description

controlSystemDesigner opens a SISO Design GUI (Control System Designer) for
interactive compensator design. This GUI allows you to design a single-input/single-
output (SISO) compensator using root locus, Bode diagram, Nichols and Nyquist
techniques. You can also automatically design a compensator using this GUI.

By default, the SISO Design Tool:

* Opens the Control and Estimation Tools Manager with a default SISO Design Task

node.

* Opens the Graphical Tuning editor with root locus and open-loop Bode diagrams.
* Places the compensator, C, in the forward path in series with the plant, G.

* Assumes the prefilter, F, and the sensor, H, are unity gains. Once you specify G and

H, they are fixed in the feedback structure.

The default control architecture is shown in this figure.

controlSystemDesigner

0
a

H

There are six control architectures available. See sisoinit for more information.

This picture shows the SISO Design Graphical editor.

Table 0-1: Use the
right-click menu to
manipulate the
compensafor and the
plots’ appearances.
Right-click in any plot

<) SIS0 Design for SIS0 Design Task

IS[=] E3

File Edit Wiew Designs Analysis Tools Window Help

Mk xe X2z [®RAMN

Root Locus Editor for Open-Loop 1 (0013

Open-Loop Bode Editor for Open-Loop 1 (0L1)

-2

-4

-

-

-0

36

271

0

0

0

0 (G421 dB

Freo: 2.42 radisec

Stable loop
0 : ‘
0

0

Bl

1&0

a0

P Inf
Freo: Matd

5 i 1 1
1] 5] 10
Real Lxis

10° 10° 10° 10
Frequency (radizec)

The status hr PTOV deS , Right-click on the plats for more design options.

useful information.

controlSystemDesigner(plant) opens the SISO Design Tool, imports plant, and
initializes the plant model G to plant. plant can be any SISO LTI model created with
ss, tf, zpk or frd, or a row or column array of LTI models.

1-119

1 Functions — Alphabetical List

1-120

controlSystemDesigner(plant,comp) initializes the plant model G to plant, the
compensator C to comp. comp is an LTI object.

controlSystemDesigner(plant,comp,sensor,prefilt) initializes the plant G

to plant, compensator C to comp, sensor H to sensor, and the prefilter F to prefilt.
sensor is an LTI object or a row or column array of LTI objects. If plant is also an array
of L'TT objects, the lengths of sensor and plant must match. prefilt is an LTI object.

controlSystemDesigner(views) or

controlSystemDesigner(views,plant,comp) specifies the initial configuration of

the SISO Design Tool. views can be any of the following strings (or combination thereof):

* "rlocus®™ — Root Locus plot

+ "bode" — Bode diagrams of the open-loop response

* "nichols®™ — Nichols plot

+ "filter™ — Bode diagrams of the prefilter F and the closed-loop response from the
command into F to the output of the plant G .

For example

controlSystemDesigner("bode*®)

opens a SISO Design Tool with only the Bode Diagrams. If there is more than one view,
the views are specified in a cell array.

controlSystemDesigner(initdata) initializes the SISO Design Tool with more
general control system configurations. Use sisoinit to create the initialization data
structure initdata.

controlSystemDesigner(sessiondata) opens the SISO Design Tool with a
previously saved session where sessiondata is the MAT-file for the saved session.

Examples

Launch SISO Design Tool GUI in default configuration using LTI models:

% Create plant G.
G = tf(1, [1 1]);
% Create controller C.
C = tf(14,[1 2D);

controlSystemDesigner

% Launch the GUI.
controlSystemDesigner(G,C)

Launch SISO Design Tool GUI in default configuration using an array of LTI models:

% Specify model parameters.

m = 3;

b = 0.5;

k = 8:1:10;

T =0.1:.05:.2;

% Create an LTI array to model variations in plant G.
for ct = 1:length(k);
G(:,:,ct) = tf(1,[m,b,k(c)]);
end
% Create an LTI array to model variations in sensor H.
for ct = 1:length(T);
H(:,:,ct) = tF(1,[1/T(ct), 1]D);
end
% Create a controller C.
C = tf(1,[1 21);
% Launch the GUI.
controlSystemDesigner(G,C,H)

Alternatives

You can open the SISO Design GUI from the MATLAB desktop. In the Apps tab, in
the Control System Design and Analysis section of the Apps gallery, click Control
System Designer.

More About

. “SISO Design Tool”

See Also

bode | linearSystemAnalyzer | | rlocus | nichols

Introduced in R2015a

1-121

1 Functions — Alphabetical List

1-122

covar

Output and state covariance of system driven by white noise

Syntax

P = covar(sys,W)
[P,Q] = covar(sys,W)

Description
covar calculates the stationary covariance of the output y of an LTI model sys driven by
Gaussian white noise inputs w. This function handles both continuous- and discrete-time

cases.

P = covar(sys,W) returns the steady-state output response covariance
P=E(y")
given the noise intensity

Ew@®)wr)T)=W8(t-1) (continuous time)
Bw[klw[l]")=Wsy (discrete time)

[P,Q]1 = covar(sys,W) also returns the steady-state state covariance
Q=E(xx")

when sys is a state-space model (otherwise Q is set to []).

When applied to an N-dimensional LTI array sys, covar returns multidimensional
arrays P, @ such that

P(:,:,i1,._.iN) and Q(z,:, i1, ...1N) are the covariance matrices for the model
sys(:,:,11,...iN).

covar

Examples

Compute the output response covariance of the discrete SISO system

H(@:L T -0.1

224022405 °

due to Gaussian white noise of intensity W = 5. Type

sys = tf([2 1],[1 0.2 0.5],0.1);
p = covar(sys,5)

These commands produce the following result.

30.3167
You can compare this output of covar to simulation results.

randn(“seed”,0)
w = sqrt(5)*randn(1,1000); % 1000 samples

% Simulate response to w with LSIM:
y = Isim(sys,w);

% Compute covariance of y values
psim = sum(y -* y)/length(w);

This yields

psim =
32.6269

The two covariance values p and psim do not agree perfectly due to the finite simulation
horizon.

More About

Algorithms

Transfer functions and zero-pole-gain models are first converted to state space with ss.

1-123

1 Functions — Alphabetical List

1-124

For continuous-time state-space models

x = Ax + Bw
y =Cx + Duw,

the steady-state state covariance @ is obtained by solving the Lyapunov equation
AQ+QAT + BWBT =o.

In discrete time, the state covariance @ solves the discrete Lyapunov equation
AQAT —@+BWBT =0

In both continuous and discrete time, the output response covariance is given by P =

CQCT + DWD". For unstable systems, P and @ are infinite. For continuous-time systems
with nonzero feedthrough, covar returns Inf for the output covariance P.

References

[1] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere Publishing, 1975, pp.
458-459.

See Also
dlyap | lyap

Introduced before R2006a

ctrb

ctrb

Controllability matrix

Syntax

Co = ctrb(sys)

Description

ctrb computes the controllability matrix for state-space systems. For an n-by-n matrix A
and an n-by-m matrix B, ctrb(A,B) returns the controllability matrix

Co=[B AB A%B ... A”‘lB}

where Co has n rows and nm columns.

Co = ctrb(sys) calculates the controllability matrix of the state-space LTI object sys.
This syntax is equivalent to executing

Co = ctrb(sys.A,sys.B)

The system is controllable if Co has full rank n.

Examples
Check if the system with the following data
A =
1 1
4 -2
B =
1 -1
1 -1

is controllable. Type

1-125

1 Functions — Alphabetical List

Co=ctrb(A,B);

% Number of uncontrollable states
unco=length(A)-rank(Co)

These commands produce the following result.

unco =
1

Limitations

Estimating the rank of the controllability matrix is ill-conditioned; that is, it is very
sensitive to roundoff errors and errors in the data. An indication of this can be seen from
this simple example.

SIHEEH

This pair is controllable if § #0 but if é <./eps, where eps is the relative machine
precision. ctrb(A,B) returns

B AB]=B (15}

which is not full rank. For cases like these, it is better to determine the controllability of
a system using ctrbf.

See Also

ctrbf | obsv

Introduced before R2006a

1-126

ctrbf

ctrbf

Compute controllability staircase form

Syntax

[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C)
ctrbf(A,B,C,tol)

Description

If the controllability matrix of (A, B) has rank r < n, where n is the size of A, then there
exists a similarity transformation such that

A=TATT B=TB, C=CcTT

where T is unitary, and the transformed system has a staircase form, in which the
uncontrollable modes, if there are any, are in the upper left corner.

< A, O = |0 =
i 2 1) e

C

where (A,, B.) is controllable, all eigenvalues of A, are uncontrollable, and

C,(sI-A) B, =C(sI-A)'B.

[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C) decomposes the state-space system
represented by A, B, and C into the controllability staircase form, Abar, Bbar, and Cbar,
described above. T is the similarity transformation matrix and Kk is a vector of length

n, where n is the order of the system represented by A. Each entry of k represents the
number of controllable states factored out during each step of the transformation matrix
calculation. The number of nonzero elements in k indicates how many iterations were
necessary to calculate T, and sum(k) is the number of states in A, the controllable
portion of Abar.

1-127

1 Functions — Alphabetical List

ctrbf(A,B,C,tol) uses the tolerance tol when calculating the controllable/
uncontrollable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(A, 1) *eps.

Examples

Compute the controllability staircase form for

A =
1 1
4 -2
B =
1 -1
1 -1
C =
1 0
0 1

and locate the uncontrollable mode.
[Abar ,Bbar,Cbar,T,k]=ctrbf(A,B,C)

Abar =
-3.0000 0
-3.0000 2.0000

Bbar =
0.0000 0.0000
1.4142 -1.4142

Cbar =

-0.7071 0.7071
0.7071 0.7071

-0.7071 0.7071
0.7071 0.7071

1-128

ctrbf

The decomposed system Abar shows an uncontrollable mode located at -3 and a
controllable mode located at 2.

More About

Algorithms

ctrbf implements the Staircase Algorithm of [1].

References

[1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley, 1970.

See Also

ctrb | minreal

Introduced before R2006a

1-129

1 Functions — Alphabetical List

1-130

ctripref

Set Control System Toolbox preferences

Syntax

ctripref

Description

ctrilpref opens a Graphical User Interface (GUI) which allows you to change the
Control System Toolbox™ preferences. Preferences set in this GUI affect future plots
only (existing plots are not altered).

Your preferences are stored to disk (in a system-dependent location) and will be
automatically reloaded in future MATLAB sessions using the Control System Toolbox
software.

See Also

controlSystemDesigner | linearSystemAnalyzer

Introduced in R2006a

d2c

d2c

Convert model from discrete to continuous time

Syntax
sysc = d2c(sysd)
sysc = d2c(sysd,method)

sysc = d2c(sysd,opts)
[sysc,G] = d2c(sysd,method,opts)
Description

sysc = d2c(sysd) produces a continuous-time model sysc that is equivalent to the
discrete-time dynamic system model sysd using zero-order hold on the inputs.

sysc = d2c(sysd,method) uses the specified conversion method method.

sysc = d2c(sysd,opts) converts sysd using the option set opts, specified using the
d2cOptions command.

[sysc,G] = d2c(sysd,method,opts) returns a matrix G that maps the states xd[k]
of the state-space model sysd to the states xc(t) of sysc.

Input Arguments
sysd
Discrete-time dynamic system model

You cannot directly use an idgrey model with FcnType="d" with d2c. Convert the
model into idss form first.

Default:
method

String specifying a discrete-to-continuous time conversion method:

1-131

1 Functions — Alphabetical List

1-132

+ "zoh" — Zero-order hold on the inputs. Assumes the control inputs are piecewise
constant over the sampling period.

+ "foh" — Linear interpolation of the inputs (modified first-order hold). Assumes the
control inputs are piecewise linear over the sampling period.

* "tustin® — Bilinear (Tustin) approximation to the derivative.

+ "matched® — Zero-pole matching method of [1] (for SISO systems only).
Default: "zoh*
opts

Discrete-to-continuous time conversion options, created using d2cOptions.

Output Arguments

sysc

Continuous-time model of the same type as the input system sysd.
When sysd is an identified (IDLTI) model, sysc:

+ Includes both the measured and noise components of sysd. If the noise variance is A
in sysd, then the continuous-time model sysc has an indicated level of noise spectral
density equal to Ts*A.

* Does not include the estimated parameter covariance of sysd. If you want to translate
the covariance while converting the model, use translatecov.

G

Matrix mapping the states Xd[k] of the state-space model sysd to the states xc(t) of
Sysc:

Xd [k]}.

xc(kTs>=GL[k]

Given an initial condition X0 for sysd and an initial input u0 = u[0], the corresponding
initial condition for sysc (assuming u[k] = O for kK < 0 1is given by:

d2c

x,(0)= G{x"}.

Uy

Examples

Example 1

Consider the following discrete-time transfer function:

z-1

H(z)=
+2z+0.3

22
Suppose the model has sample time 7, = 0.1 s. You can derive a continuous-time zero-
order-hold equivalent model with the following commands:

= tf([1 -1], [1 1 0.3], 0.1);
c = d2c(H)

I T

Hc =
121.7 s + 3.026e-12
s™N2 + 12.04 s + 776.7

Continuous-time transfer function.

Discretizing the resulting model Hc with the default zero-order hold method and sample
time 7, = 0.1s returns the original discrete model H(z):

c2d(Hc,0.1)

z"2 + z + 0.3

Sample time: 0.1 seconds
Discrete-time transfer function.

1-133

1 Functions — Alphabetical List

To use the Tustin approximation instead of zero-order hold, type
Hc = d2c(H, "tustin®);

As with zero-order hold, the inverse discretization operation
c2d(Hc,0.1, "tustin®);

gives back the original H(z).

Example 2

Convert an identified transfer function and compare its performance against a directly
estimated continuous-time model.

load iddatal

sysld = tfest(z1,2,"Ts",0.1);
syslc = d2c(sysld, "zoh");
sys2c = tfest(zl,2);

compare(zl,syslc,sys2c)

The two systems are virtually identical.

Time Response Comparison

15

z1 (y1)
syslc:69.3%
sys2e: TO.T7% |

1071

Amplitude
y1
(o] [}
- ——
--~—“_ﬂ.E-_-_:
——
[——
e ——
—_—
I —
e
—_— |
=

o
==
==
T —m
T
—

10

-15 * ; ' ; '
5 10 15 20 25 30
Time (seconds)

1-134

d2c

Example 3

Analyze the effect of parameter uncertainty on frequency response across d2c operation
on an identified model.

load iddatal
sysd tfest(zl, 2, "Ts", 0.1);
sysc d2c(sysd, "zoh");

syslc has no covariance information. Regenerate it using a zero iteration update with
the same estimation command and estimation data:

opt = tfestOptions;
opt.SearchOption_Maxlter = 0;
syslc = tfest(zl, sysc, opt);

h = bodeplot(sysd, sysc);
showConfidence(h)

The uncertainties of sysc and sysd are comparable up to the Nyquist frequency.
However, sysc exhibits large uncertainty in the frequency range for which the
estimation data does not provide any information.

If you do not have access to the estimation data, use translatecov which is a Gauss-
approximation formula based translation of covariance across model type conversion
operations.

Limitations

The Tustin approximation is not defined for systems with poles at z = -1 and is ill-
conditioned for systems with poles near z = —1.

The zero-order hold method cannot handle systems with poles at z = 0. In addition, the
"zoh" conversion increases the model order for systems with negative real poles, [2]. The
model order increases because the matrix logarithm maps real negative poles to complex
poles. Single complex poles are not physically meaningful because of their complex time
response.

Instead, to ensure that all complex poles of the continuous model come in conjugate pairs,
d2c replaces negative real poles z = —a with a pair of complex conjugate poles near —a.

1-135

1 Functions — Alphabetical List

1-136

The conversion then yields a continuous model with higher order. For example, to convert
the discrete-time transfer function

z+0.2
(2+05)(2* +2+04)

H(z)=

type:

Ts = 0.1 % sample time 0.1 s

H = zpk(-0.2,-0.5,1,Ts) * tf(1,[1 1 0.4],Ts)
Hc = d2c(H)

These commands produce the following result.

Warning: System order was increased to handle real negative poles.

Zero/pole/gain:
-33.6556 (s-6.273) (s"2 + 28.29s + 1041)

(s™2 + 9.163s + 637.3) (SA2_+ 13.86s + 1035)

To convert Hc back to discrete time, type:
c2d(Hc,Ts)

yielding

Zero/pole/gain:
(z+0.5) (z+0.2)

(z+0.5)"2 (z*2 + z + 0.4)
Sample time: 0.1

This discrete model coincides with H(z) after canceling the pole/zero pair at z =—-0.5.

More About
Tips

+ Use the syntax sysc = d2c(sysd, "method") to convert sysd using the default
options for"method”. To specify tustin conversion with a frequency prewarp
(formerly the "prewarp” method), use the syntax sysc = d2c(sysd,opts). See
the d2cOptions reference page for more information.

d2c

Algorithms

d2c performs the "zoh" conversion in state space, and relies on the matrix logarithm
(see logm in the MATLAB documentation).

See “Continuous-Discrete Conversion Methods” for more details on the conversion
methods.

References

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems
(3rd Edition), Prentice Hall, 1997..

[2] Kollar, I., G.F. Franklin, and R. Pintelon, "On the Equivalence of z-domain
and s-domain Models in System Identification," Proceedings of the IEEE

Instrumentation and Measurement Technology Conference, Brussels, Belgium,
June, 1996, Vol. 1, pp. 14-19.

See Also

c2d | d2d | d2cOptions | translatecov | logm

Introduced before R2006a

1-137

1 Functions — Alphabetical List

1-138

d2cOptions

Create option set for discrete- to continuous-time conversions

Syntax

opts = d2cOptions
opts = d2cOptions(Name,Value)

Description

opts = d2cOptions returns the default options for d2c.

opts = d2cOptions(Name,Value) creates an option set with the options specified by
one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments
"method*

Discretization method, specified as one of the following values:

"zoh* Zero-order hold, where d2c assumes the control inputs are piecewise
constant over the sample time Ts.

"foh* Linear interpolation of the inputs (modified first-order hold).
Assumes the control inputs are piecewise linear over the sampling
period.

"tustin® Bilinear (Tustin) approximation. By default, d2c converts with no
prewarp. To include prewarp, use the PrewarpFrequency option.

"matched” Zero-pole matching method. (See [1], p. 224.)

Default: "zoh*

d2cOptions

"PrewarpFrequency”

Prewarp frequency for "tustin® method, specified in rad/TimeUnit, where TimeUnit
is the time units, specified in the TimeUnit property, of the discrete-time system.
Specify the prewarp frequency as a positive scalar value. A value of 0 corresponds to the
"tustin® method without prewarp.

Default: 0

For additional information about conversion methods, see “Continuous-Discrete
b
Conversion Methods”.

Examples

Convert a discrete-time model to continuous-time using the "tustin® method with
frequency prewarping.

Create the discrete-time transfer function

z+1

2Ziz+1

hd = ¢Ff([1 1], [1 1 1], 0.1); % 0.1s sample time
To convert to continuous-time, use d2cOptions to create the option set.

opts = d2cOptions("Method®, "tustin®, "PrewarpFrequency”, 20);
hc = d2c(hd, opts);

You can use opts to resample additional models using the same options.

References

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems
(3rd Edition), Prentice Hall, 1997.

See Also
d2c

1-139

1 Functions — Alphabetical List

Introduced in R2010a

1-140

d2d

d2d

Resample discrete-time model

Syntax

sys1
sys1
syst

d2d(sys, Ts)
d2d(sys, Ts, "method")
d2d(sys, Ts, opts)

Description

sys1 = d2d(sys, TsS) resamples the discrete-time dynamic system model sys to
produce an equivalent discrete-time model sysl with the new sample time TS (in
seconds), using zero-order hold on the inputs.

sys1 = d2d(sys, Ts, "method") uses the specified resampling method "method":

"zoh" — Zero-order hold on the inputs

"tustin® — Bilinear (Tustin) approximation

sys1 = d2d(sys, Ts, opts) resamples sys using the option set with d2dOptions.

Examples

Example 1

Consider the zero-pole-gain model

z-0.7
z—-0.5

H(z)=

with sample time 0.1 s. You can resample this model at 0.05 s by typing

H = zpk(0.7,0.5,1,0.1)

1-141

1 Functions — Alphabetical List

1-142

H2 = d2d(H,0.05)
Zero/pole/gain:
(z-0.8243)

(z-0.7071)
Sample time: 0.05

The inverse resampling operation, performed by typing d2d(H2,0.1), yields back the
initial model H(z).

Zero/pole/gain:
(z-0.7)

Sample time: 0.1

Example 2

Suppose you estimates a discrete-time model of a sample time commensurate with the
estimation data (Ts = 0.1 seconds). However, your deployment application demands
a faster sampling frequency (Ts = 0.01 seconds).

load iddatal
sys = oe(zl, [2 2 1]);
sysFast = d2d(sys, 0.01, "zoh")

bode(sys, sysFast)

More About
Tips

* Use the syntax sysl = d2d(sys, Ts, "method") to resample Sys using the
default options for"method”. To specify tustin resampling with a frequency
prewarp (formerly the "prewarp® method), use the syntax sysl = d2d(sys, Ts,
opts). See the d2dOptions reference page.

* When sys is an identified (IDLTI) model, sys1 does not include the estimated
parameter covariance of sys. If you want to translate the covariance while converting
the model, use translatecov.

d2d

See Also
c2d | d2c | d2dOptions | upsample | translatecov

Introduced before R2006a

1-143

1 Functions — Alphabetical List

d2dOptions

Create option set for discrete-time resampling

Syntax
opts = d2dOptions
opts = d2dOptions("OptionName®, OptionValue)

Description

opts = d2dOptions returns the default options for d2d.

opts = d2dOptions(“OptionName=®, OptionValue) accepts one or more comma-
separated name/value pairs that specify options for the d2d command. Specify

OptionName inside single quotes.

This table summarizes the options that the d2d command supports.

Input Arguments

Name-Value Pair Arguments
"Method*

Discretization method, specified as one of the following values:

"zoh* Zero-order hold, where d2d assumes the control inputs are piecewise
constant over the sample time Ts.

"tustin” Bilinear (Tustin) approximation. By default, d2d resamples with no
prewarp. To include prewarp, use the PrewarpFrequency option.

Default: "zoh*

1-144

d2dOptions

"PrewarpFrequency”

Prewarp frequency for "tustin® method, specified in rad/TimeUnit, where TimeUnit
1s the time units, specified in the TimeUnit property, of the resampled system. Takes
positive scalar values. The prewarp frequency must be smaller than the Nyquist
frequency before and after resampling. A value of 0 corresponds to the standard
"tustin® method without prewarp.

Default: 0

Examples

Resample a discrete-time model using the "tustin® method with frequency prewarping.

Create the discrete-time transfer function

z+1

2+z+1

hi = tf([1 1], [1 1 1], 0.1); % 0.1s sample time
To resample to a different sample time, use d2dOptions to create the option set.

opts = d2dOptions(“Method®, “tustin®, "PrewarpFrequency®, 20);
h2 = d2d(hl1, 0.05, opts);

You can use opts to resample additional models using the same options.

See Also
d2d

Introduced in R2010a

1-145

1 Functions — Alphabetical List

1-146

damp

Natural frequency and damping ratio

Syntax

damp(sys)
[Wn,zeta]

= damp(sys)
[Wn,zeta,P] =

damp(sys)

Description

damp(sys) displays a table of the damping ratio (also called damping factor), natural
frequency, and time constant of the poles of the linear model sys. For a discrete-time
model, the table also includes the magnitude of each pole. Frequencies are expressed in
units of the reciprocal of the TimeUnit property of sys. Time constants are expressed in
the same units as the TimeUnit property of sys.

[Wn,zeta] = damp(sys) returns the natural frequencies, Wn, and damping
ratios,zeta, of the poles of sys.

[Wn,zeta,P] = damp(sys) returns the poles of sys.

Input Arguments
sys

Any linear dynamic system model.

Output Arguments
Wn

Vector containing the natural frequencies of each pole of sys, in order of increasing
frequency. Frequencies are expressed in units of the reciprocal of the TimeUnit property
of sys.

damp

If sys is a discrete-time model with specified sample time, Wn contains the natural
frequencies of the equivalent continuous-time poles (see “Algorithms” on page 1-148).
If sys has an unspecified sample time (Ts = -1), then the software uses Ts = 1 and
calculates Wn accordingly.

zeta
Vector containing the damping ratios of each pole of sys, in the same order as Wn.

If sys is a discrete-time model with specified sample time, zeta contains the damping
ratios of the equivalent continuous-time poles (see “Algorithms” on page 1-148). If

sys has an unspecified sample time (Ts = -1), then the software uses Ts = 1 and
calculates zeta accordingly.

P

Vector containing the poles of sys, in order of increasing natural frequency. P is the same
as the output of pole(sys), except for the order.

Examples

Natural Frequency, Damping Ratio, and Poles of Continuous-Time System

Calculate the natural frequency, damping ratio, time constant, and poles of the
continuous-time transfer function:

252 + Bs+1

s2+25+3

H(s) =
H = tf([2 5 11.[1 2 3]);

Display the natural frequencies, damping ratios, time constants, and poles of H.

damp(H)

Pole Damping Frequency Time Constant
(rad/seconds) (seconds)
-1.00e+00 + 1.41e+00i 5.77e-01 1.73e+00 1.00e+00
-1.00e+00 - 1.41e+00i 5.77e-01 1.73e+00 1.00e+00

1-147

1 Functions — Alphabetical List

Obtain vectors containing the natural frequencies and damping ratios of the poles.
[Wn,zeta] = damp(H);

Calculate the associated time constants.

tau = 1./(zeta.*Wn);

Natural Frequency, Damping Ratio, and Poles of Discrete-Time System

Calculate the natural frequency, damping ratio, time constant, and poles of a discrete-
time transfer function.

H = tf([5 3 1],[1 6 4 4],0.01);

Display information about the poles of H.

damp(H)
Pole Magnitude Damping Frequency Time Constant
(rad/seconds) (seconds)
-3.02e-01 + 8.06e-011 8.61e-01 7.74e-02 1.93e+02 6.68e-02
-3.02e-01 - 8.06e-011 8.61e-01 7.74e-02 1.93e+02 6.68e-02
-5.40e+00 5.40e+00 -4.73e-01 3.57e+02 -5.93e-03

The Magnitude column displays the discrete-time pole magnitudes. The Damping,
Frequency, and Time Constant columns display values calculated using the
equivalent continuous-time poles.

Obtain vectors containing the natural frequencies and damping ratios of the poles.
[Wn,zeta] = damp(H);
Calculate the associated time constants.

tau = 1./(zeta.*Wn);

More About

Algorithms

The natural frequency, time constant, and damping ratio of the system poles are defined
in the following table:

1-148

damp

Continuous Time

Discrete Time with Sample Time
Ts

Pole Location S z
Equivalent Continuous- Not applicable In(z)
Time Pole 5= T

S
Natural Frequency . = |s| n(2)

n
S
Damping Ratio ¢ = —cos(Ls) ¢ =-cos(4Ls) =—cos(Zln(2))
Time Constant 1 1
T= T=

See Also

eig | esort | dsort | pole | pzmap | zero

Introduced before R2006a

1-149

1 Functions — Alphabetical List

1-150

dare

Solve discrete-time algebraic Riccati equations (DARES)

Syntax
[X,L,G] = dare(A,B,Q,R)
[X,L,G] = dare(A,B,Q,R,S,E)

[X,L,G,report] = dare(A,B,Q,...)
[X1,X2,L,report] = dare(A,B,Q,...," "Factor")
Description

[X,L,G] = dare(A,B,Q,R) computes the unique stabilizing solution X of the
discrete-time algebraic Riccati equation

ATxA-X-ATXBB"XB+R) 'BTXA+Q=0

The dare function also returns the gain matrix, G =(BY XB+R)"' BT XA, and the vector
L of closed loop eigenvalues, where

L=eig(A-B*G,E)

[X,L,G] = dare(A,B,Q,R,S,E) solves the more general discrete-time algebraic
Riccati equation,

ATXA-ETXE-(ATxB+S)BTXB+R Y(BTXA+ST)+Q =0
or, equivalently, if R is nonsingular,
ETXE=FT'xF-FTXxBBTXB+ R 'BTXF +Q- SR1sT

where F = A-BR1ST . When omitted, R, S, and E are set to the default values R=1,
S=0, and E=I.

dare

The dare function returns the corresponding gain matrix

G=BT'xB+R1BTxA+8T)

and a vector L of closed-loop eigenvalues, where

L= eig(A-B*G,E)

[X,L,G,report] = dare(A,B,Q, -..) returns a diagnosis report with value:

* -1 when the associated symplectic pencil has eigenvalues on or very near the unit
circle

+ -2 when there is no finite stabilizing solution X

* The Frobenius norm if X exists and is finite

[X1,X2,L,report] = dare(A,B,Q, ..., "factor™) returns two matrices, X1 and X2,
and a diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector L contains the
closed-loop eigenvalues. All outputs are empty when the associated Symplectic matrix
has eigenvalues on the unit circle.

Limitations

The (A, B) pair must be stabilizable (that is, all eigenvalues of A outside the unit

disk must be controllable). In addition, the associated symplectic pencil must have no
eigenvalue on the unit circle. Sufficient conditions for this to hold are (@, A) detectable
when S=0and R > 0, or

>0

Q S
{STR

More About

Algorithms

dare implements the algorithms described in [1]. It uses the QZ algorithm to deflate the
extended symplectic pencil and compute its stable invariant subspace.

1-151

1 Functions — Alphabetical List

References

[1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software
for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 1746-1754.

See Also

care | dlyap | gdare

Introduced before R2006a

1-152

db2mag

db2mag

Convert decibels (dB) to magnitude

Syntax

y = db2mag(ydb)

Description

y = db2mag(ydb) returns the corresponding magnitude y for a given decibel (dB)
value ydb . The relationship between magnitude and decibels is ydb = 20+ log;,(y) .

See Also
mag2db

Introduced in R2008a

1-153

1 Functions — Alphabetical List

dcgain

Low-frequency (DC) gain of LTI system

Syntax

k = dcgain(sys)

Description

k = dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time

The continuous-time DC gain is the transfer function value at the frequency s = 0. For
state-space models with matrices (A, B, C, D), this value is

K=D—-CA'B
Discrete Time

The discrete-time DC gain is the transfer function value at z = 1. For state-space models
with matrices (4, B, C, D), this value is
K=D+CI-A"'B

Examples

Example 1

To compute the DC gain of the MIMO transfer function

s—1
1 2
H(s)= . s S++32+3

s+1 s—3

1-154

degain

type

H=[1 tf([1 -1],[1 1 3]) ; tf(L,[1 1]) tf([1 2].[1 -3D];
dcgain(H)

to get the result:

ans =
1.0000 -0.3333
1.0000 -0.6667

Example 2

To compute the DC gain of an identified process model, type;

load iddatal

sys = idproc("pld*);
syse = procest(zl, sys)
dcgain(syse)

The DC gain is stored same as syse .Kp.

More About

Tips

The DC gain is infinite for systems with integrators.

See Also

norm | evalfr

Introduced before R2006a

1-155

1 Functions — Alphabetical List

delay2z

Replace delays of discrete-time TF, SS, or ZPK models by poles at z=0, or replace delays
of FRD models by phase shift

Note: delay2z has been removed. Use absorbDelay instead.

Introduced before R2006a

1-156

delayss

delayss

Create state-space models with delayed inputs, outputs, and states

Syntax

sys=delayss(A,B,C,D,delayterms)
sys=delayss(A,B,C,D,ts,delayterms)

Description

sys=delayss(A,B,C,D,delayterms)constructs a continuous-time state-space model
of the form:

% = AX(O)+ Bu(t) + 3 (At ~1) + Bu(t)

y(0)=Cx(®)+ Du(?) + i (Cix(t = 1) + Diu(t —1;))

J=1

where t;, j=1,..,N are time delays expressed in seconds. delayterms is a struct array
with fields delay, a, b, c, d where the fields of delayterms(j) contain the values of tj,
Aj, Bj, CJ, and Dj, respectively. The resulting model sys is a state-space (SS) model with
internal delays.

sys=delayss(A,B,C,D,ts,delayterms)constructs the discrete-time counterpart:

xlk +1]1= Axk]+ Bulk]+ i{A}x{k —nj]+Bulk —n;]}

J=1

ylkl=Cxlk]+Dulk]+ i{C;X[k —nil+ Diulk —nj]}

=

where Nj, j=1,..,N are time delays expressed as integer multiples of the sample time ts.

1-157

1 Functions — Alphabetical List

Examples

To create the model:

D ()= x(t—1.2)+ 2u(t~0.5)
dt

y(t) = x(t—0.5)+ u(r)

type

DelayT(1) = struct("delay®,0.5,"a",0,"b",2,"c",1,%d",0);
DelayT(2) = struct("delay~,1.2,"a",-1,"b",0,"c",0,"d",0);
sys = delayss(1,0,0,1,DelayT)

a =
x1
X1 0

b =
ul
X1 2

CcC =
x1
yl 1

d =
ul
yl 1

(values computed with all internal delays set to zero)
Internal delays: 0.5 0.5 1.2

Continuous-time model.

See Also

getdelaymodel | ss

Introduced in R2007a

1-158

dlgr

digr

Linear-quadratic (LQ) state-feedback regulator for discrete-time state-space system

Syntax

[K,S,e] = dlgr(A,B,Q,R,N)

Description

[K,S,e] = dlgr(A,B,Q,R,N) calculates the optimal gain matrix K such that the
state-feedback law

ul[n] =-Kx|[n]

minimizes the quadratic cost function

J(w) = i (x[n]T Qx[n]+ u[n]T Ru[n]+ 2x[n]T Nu[n)

n=l1
for the discrete-time state-space mode
x[n+1] = Ax[n]+ Bu[n]

The default value N=0 is assumed when N is omitted.

In addition to the state-feedback gain K, dIgr returns the infinite horizon solution S of
the associated discrete-time Riccati equation

ATSA-S-(ATSB+N)BTSB+R) 1(BTSA+NT)+Q =0
and the closed-loop eigenvalues e = eig(A-B*K). Note that K is derived from S by

K=BTsB+R1BTsA+NT)

1-159

1 Functions — Alphabetical List

Limitations

The problem data must satisfy:

The pair (A, B) is stabilizable.
R>0and @ —-NR'N">0
(@ — NR'N”, A — BR"'N") has no unobservable mode on the unit circle.

See Also
dare | Iqgreg | Iqr | Igrd | Igry

Introduced before R2006a

1-160

dlyap

dlyap

Solve discrete-time Lyapunov equations

Syntax

X = dlyap(A,Q)

X = dlyap(A,B,C)

X = dlyap(A,Q,[1.E)
Description

X = dlyap(A,Q) solves the discrete-time Lyapunov equation AXA” - X+ @ =0,
where A and @ are n-by-n matrices.

The solution X is symmetric when @ is symmetric, and positive definite when @ is
positive definite and A has all its eigenvalues inside the unit disk.

X = dlyap(A,B,C) solves the Sylvester equation AXB—- X+ C =0,

where A, B, and C must have compatible dimensions but need not be square.

X = dlyap(A,Q, [1,E) solves the generalized discrete-time Lyapunov equation AXA” —
EXE"+@Q=0,

where @ is a symmetric matrix. The empty square brackets, [], are mandatory. If you
place any values inside them, the function will error out.

Diagnostics

The discrete-time Lyapunov equation has a (unique) solution if the eigenvalues a;, as, ...,
ay of A satisfy a;a; # 1 for all (i, j).

If this condition is violated, dlyap produces the error message

Solution does not exist or is not unique.

1-161

1 Functions — Alphabetical List

More About

Algorithms

dlyap uses SLICOT routines SBOSMD and SGO3AD for Lyapunov equations and
SB04QD (SLICOT) for Sylvester equations.

References

[1] Barraud, A.Y., “A numerical algorithm to solve A XA - X = Q,” IEEE Trans. Auto.
Contr., AC-22, pp. 883-885, 1977.

[2] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB=C,"
Comm. of the ACM, Vol. 15, No. 9, 1972.

[3] Hammarling, S.J., “Numerical solution of the stable, non-negative definite Lyapunov
equation,” IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.

[4] Higham, N.J., "FORTRAN codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation,” A.C.M. Trans. Math. Soft.,
Vol. 14, No. 4, pp. 381-396, 1988.

[6] Penzl, T., "Numerical solution of generalized Lyapunov equations,” Advances in
Comp. Math., Vol. 8, pp. 33-48, 1998.

[6] Golub, G.H., Nash, S. and Van Loan, C.F. “A Hessenberg-Schur method for the
problem AX + XB = C,” IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.

[7] Sima, V. C, “Algorithms for Linear-quadratic Optimization,” Marcel Dekker, Inc., New
York, 1996.

See Also

covar | lyap

Introduced before R2006a

1-162

dlyapchol

dlyapchol

Square-root solver for discrete-time Lyapunov equations

Syntax

R
X

dlyapchol (A,B)
dlyapchol (A,B,E)

Description

R = dlyapchol (A,B) computes a Cholesky factorization X = R"*R of the solution X to
the Lyapunov matrix equation:

A*X*AT- X + B*B" = 0
All eigenvalues of A matrix must lie in the open unit disk for R to exist.

X = dlyapchol (A,B,E) computes a Cholesky factorization X = R"*R of X solving the
Sylvester equation

A*X*A" - E*X*E" + B*B" = 0

All generalized eigenvalues of (A,E) must lie in the open unit disk for R to exist.

More About

Algorithms

dlyapchol uses SLICOT routines SBO30OD and SG03BD.

References

[1] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB=C,"
Comm. of the ACM, Vol. 15, No. 9, 1972.

1-163

1 Functions — Alphabetical List

[2] Hammarling, S.J., “Numerical solution of the stable, non-negative definite Lyapunov
equation,” IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.

[3] Penzl, T., "Numerical solution of generalized Lyapunov equations,” Advances in
Comp. Math., Vol. 8, pp. 33-48, 1998.

See Also
dlyap | lyapchol

Introduced before R2006a

1-164

drss

drss

Generate random discrete test model

Syntax

sys = drss(n)
drss(n,p)
drss(n,p,m)
drss(n,p,m,sl,...sn)

Description

sys = drss(n) generates an n-th order model with one input and one output, and
returns the model in the state-space object sys. The poles of sys are random and stable
with the possible exception of poles at z = 1 (integrators).

drss(n,p) generates an n-th order model with one input and p outputs.
drss(n,p,m) generates an n-th order model with p outputs and m inputs.

drss(n,p,m,sl,...sn) generates a sl-by-sn array of n-th order models with m inputs
and p outputs.

In all cases, the discrete-time state-space model or array returned by drss has an
unspecified sample time. To generate transfer function or zero-pole-gain systems, convert
sys using tF or zpk.

Examples

Generate a discrete LTI system with three states, four outputs, and two inputs.
sys = drss(3,4,2)

a=

x1 X2 X3
x1 0.4766 0.1102 -0.7222

1-165

1 Functions — Alphabetical List

1-166

X2
X3

X1
X2
X3

yl
y2
y3
v4

0.1102
-0.7222

ul
-0.4326
-0

x1

1.189
-0.03763
0.3273
0.1746

ul
-0.09565
-0.8323
0.2944
-0

0.9115
0.1628

u2
0.2877
-0
1.191

X2
-0.1867
0.7258
-0.5883
2.183

u2

0

1.624
-0.6918
0.858

Sample time: unspecified
Discrete-time model.

See Also
rss | tF | zpk

Introduced before R2006a

0.1628
-0.202

X3

-0
0.1139
1.067

dsort

dsort

Sort discrete-time poles by magnitude

Syntax

dsort
[s,ndx] = dsort(p)

Description

dsort sorts the discrete-time poles contained in the vector p in descending order by
magnitude. Unstable poles appear first.

When called with one lefthand argument, dsort returns the sorted poles in s.

[s,ndx] = dsort(p) also returns the vector ndx containing the indices used in the
sort.

Examples

Sort the following discrete poles.

p:
-0.2410 + 0.5573i
-0.2410 - 0.5573i
0.1503
-0.0972
-0.2590

s = dsort(p)

S =
-0.2410 + 0.5573i
-0.2410 - 0.5573i
-0.2590
0.1503
-0.0972

1-167

1 Functions — Alphabetical List

Limitations

The poles in the vector p must appear in complex conjugate pairs.

See Also

eig | esort | sort | pole | pzmap | zero

Introduced before R2006a

1-168

dss

dss

Create descriptor state-space models

Syntax

sys = dss(A,B,C,D,E)

sys = dss(A,B,C,D,E,Ts)

sys = dss(A,B,C,D,E, Itisys)
Description

sys = dss(A,B,C,D,E) creates the continuous-time descriptor state-space model

E@:Ax+Bu

dt
y=Cx+Du

The output sys is an SS model storing the model data (see “State-Space Models”). Note
that ss produces the same type of object. If the matrix D = 0, you can simply set d to the
scalar O (zero).

sys = dss(A,B,C,D,E,Ts) creates the discrete-time descriptor model
Ex[n+1] = Ax[n]+ Buln]
ylnl=Cx[nl+ Duln]
with sample time Ts (in seconds).

sys = dss(A,B,C,D,E, Itisys) creates a descriptor model with properties inherited
from the LTI model Itisys (including the sample time).

Any of the previous syntaxes can be followed by property name/property value pairs

"Property”,Value

1-169

1 Functions — Alphabetical List

Each pair specifies a particular LTI property of the model, for example, the input names
or some notes on the model history. See set and the example below for details.

Examples
The command

sys = dss(1,2,3,4,5, "inputdelay”,0.1, "inputname”, "voltage~, . ..
"notes”,"Just an example®);

creates the model

bx=x+2u
y=3x+4u

with a 0.1 second input delay. The input is labeled "voltage®, and a note is attached to
tell you that this is just an example.

See Also

dssdata | get | set | ss

Introduced before R2006a

1-170

dssdata

dssdata

Extract descriptor state-space data

Syntax

[A,B,C,D,E] = dssdata(sys)
[A,B,C,D,E,Ts] = dssdata(sys)

Description

[A,B,C,D,E] = dssdata(sys) returns the values of the A, B, C, D, and E matrices
for the descriptor state-space model sys (see dss). dssdata equals ssdata for regular
state-space models (1.e., when E=I).

If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to
zero (creating a zero-order Padé approximation). For some systems, setting delays to zero
creates singular algebraic loops, which result in either improper or ill-defined, zero-delay
approximations. For these systems, dssdata cannot display the matrices and returns an
error. This error does not imply a problem with the model sys itself.

[A,B,C,D,E,Ts] = dssdata(sys) also returns the sample time Ts.

You can access other properties of Sys using get or direct structure-like referencing (e.g.,
sys.Ts).

For arrays of SS models with variable order, use the syntax
[A,B,C,D,E] = dssdata(sys, " "cell*")

to extract the state-space matrices of each model as separate cells in the cell arrays A, B,
C, D, and E.

See Also

dss | get | getdelaymodel | ssdata

Introduced before R2006a

1-171

1 Functions — Alphabetical List

esort

Sort continuous-time poles by real part

Syntax

s = esort(p)
[s,ndx] = esort(p)

Description

esort sorts the continuous-time poles contained in the vector p by real part. Unstable
eigenvalues appear first and the remaining poles are ordered by decreasing real parts.

When called with one left-hand argument, s = esort(p) returns the sorted eigenvalues
in S.

[s,ndx] = esort(p) returnsthe additional argument ndx, a vector containing the
indices used in the sort.

Examples
Sort the following continuous eigenvalues.
p
p =
-0.2410+ 0.5573i
-0.2410- 0.5573i
0.1503
-0.0972
-0.2590
esort(p)
ans =
0.1503
-0.0972

-0.2410+ 0.5573i

1-172

esort

-0.2410- 0.5573i
-0.2590

Limitations

The eigenvalues in the vector p must appear in complex conjugate pairs.

See Also

dsort | sort | eig | pole | pzmap | zero

Introduced before R2006a

1-173

1 Functions — Alphabetical List

1-174

estim

Form state estimator given estimator gain

Syntax

est = estim(sys,L)
est = estim(sys,L,sensors,known)
Description

est = estim(sys,L) produces a state/output estimator est given the plant state-
space model sys and the estimator gain L. All inputs w of Sys are assumed stochastic
(process and/or measurement noise), and all outputs y are measured. The estimator est
is returned in state-space form (SS object).
For a continuous-time plant sys with equations

x = Ax + Bw

y=Cx+ Dw

estim uses the following equations to generate a plant output estimate y and a state

estimate X, which are estimates of y(¢)=C and x(), respectively:

x=A%+L(y-C%)
HEH:
= 7 X

For a discrete-time plant sys with the following equations:

K> >

x[n+1]= Ax[n]+ Buln]
yMnl=Cudnl+ Duln]

estim

estim uses estimator equations similar to those for continuous-time to generate a plant
output estimate yn |n—1] and a state estimate x[n | n —1], which are estimates of y[n]

and x[n], respectively. These estimates are based on past measurements up to y[n-I].

est = estim(sys,L,sensors,known) handles more general plants sys with both
known (deterministic) inputs © and stochastic inputs w, and both measured outputs y
and nonmeasured outputs z.

x =Ax +Byjw+ Byu
C D
e e o
y] G Dy Dy
The index vectors sensors and known specify which outputs of sys are measured (y),

and which inputs of sys are known (). The resulting estimator est, found using the
following equations, uses both u and y to produce the output and state estimates.

% = A% + Byu+ L(y — Cyf — Do)

)

i (known) — g L = ¥
est
¥y (sensors, — = - i
Examples

Consider a state-space model sys with seven outputs and four inputs. Suppose you
designed a Kalman gain matrix L using outputs 4, 7, and 1 of the plant as sensor
measurements and inputs 1, 4, and 3 of the plant as known (deterministic) inputs. You
can then form the Kalman estimator by

sensors = [4,7,1];

known = [1,4,3];
est = estim(sys,L,sensors,known)

1-175

1 Functions — Alphabetical List

1-176

See the function kalman for direct Kalman estimator design.

More About

Tips

You can use the functions place (pole placement) or kalman (Kalman filtering) to design
an adequate estimator gain L. Note that the estimator poles (eigenvalues of A-LC) should
be faster than the plant dynamics (eigenvalues of A) to ensure accurate estimation.

See Also

kalman | ss | ssest | predict | place | reg | kalmd | Iqgreg

Introduced before R2006a

evalfr

evalfr

Evaluate frequency response at given frequency

Syntax

frsp = evalfr(sys,¥T)

Description

frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS, or ZPK model
sys at the complex number F. For state-space models with data (A, B, C, D), the result is

H(f)=D+C (fI-A)'B

evalfr is a simplified version of Freqresp meant for quick evaluation of the response
at a single point. Use freqresp to compute the frequency response over a set of
frequencies.

Examples

Example 1

To evaluate the discrete-time transfer function

z-1

H(Z) B +z+1

22
atz=1+], type
H=tf([1 -1],[1 1 1],-1);
z = 1+j;
evalfr(H,z)

to get the result:

ans =

1-177

1 Functions — Alphabetical List

2.3077e-01 + 1.5385e-011i

Example 2

To evaluate the frequency response of a continuous-time IDTF model at frequency w =
0.1 rad/s, type:

sys = idtf(1,[1 2 1]);
w 0.1;

s 1j*w;

evalfr(sys, s)

The result is same as fregresp(sys, w).

Limitations

The response is not finite when F is a pole of sys.

See Also

freqgresp | bode | sigma

Introduced before R2006a

1-178

Iti/exp

Iti/exp

Create pure continuous-time delays

Syntax

d = exp(tau,s)

Description

d = exp(tau,s) creates pure continuous-time delays. The transfer function of a pure
delay tau is:

d(s) = exp(-tau*s)
You can specify this transfer function using exp.

zpk("s®)
exp(-tau*s)

S
d

More generally, given a 2D array M,

zpk("s*®)
exp(-M*s)

S
D

creates an array D of pure delays where
D(.j) = exp(=M(z,))s).

All entries of M should be non negative for causality.

See Also
zpk | tf

Introduced in R2006a

1-179

1 Functions — Alphabetical List

1-180

fcat

Concatenate FRD models along frequency dimension

Syntax

sys = fcat(sys1,sys2,...)

Description

sys = fcat(sys1,sys2,...) takes two or more Frd models and merges their
frequency responses into a single frd model sys. The resulting frequency vector is sorted
by increasing frequency. The frequency vectors of sysl, sys2, ... should not intersect.
If the frequency vectors do intersect, use Fdel to remove intersecting data from one or
more of the models.

See Also
fselect | interp | fdel | frd

Introduced in R2006a

fdel

fdel

Delete specified data from frequency response data (FRD) models

Syntax

sysout = fdel(sys, freq)

Description

sysout = Fdel(sys, freq) removes from the frd model sys the data nearest to the
frequency values specified in the vector freq.

Input Arguments
Sys

frd model.

freq

Vector of frequency values.

Output Arguments

sysout

frd model containing the data remaining in sys after removing the frequency points
closest to the entries of freq.

Examples

Remove selected data from a frd model. In this example, first obtain an frd model:

1-181

1 Functions — Alphabetical List

sys = frd(tf([1].[1 11)., logspace(0,1,10))

Frequency(rad/s) Response

O~NODMWNNRRPRE

g~

© 0

w N

o o
cNeoNoNoNoNoNoNoNeoNe)

[EEY

'_\

D

I

|

o

w

'_\

(o]

w

=Y

Continuous-time frequency response.

The following commands remove the data nearest 2, 3.5, and 6 rad/s from sys.

freq = [2, 3.5, 6];
sysout = fdel(sys, freq)

Frequency(rad/s) Response
1.0000 0.5000 - 0.5000i
1.2915 0.3748 - 0.4841i
1.6681 0.2644 - 0.4410i
2.7826 0.1144 - 0.3183i
4.6416 0.0444 - 0.2059i
7.7426 0.0164 - 0.1270i

10.0000 0.0099 - 0.0990i

Continuous-time frequency response.

You do not have to specify the exact frequency of the data to remove. fdel removes the
data nearest to the specified frequencies.

More About
Tips

+ Use fdel to remove unwanted data (for example, outlier points) at specified
frequencies.

1-182

fdel

+ Use fdel to remove data at intersecting frequencies from frd models before merging
them with fcat. fcat produces an error when you attempt to merge Frd models that
have intersecting frequency data.

+ To remove data from an frd model within a range of frequencies, use fselect.

See Also

fcat | fselect | frd

Introduced in R2010a

1-183

1 Functions — Alphabetical List

1-184

feedback

Feedback connection of two models

Syntax

sys = feedback(sysl,sys2)

Description

sys = feedback(sysl,sys2) returns a model object sys for the negative feedback
interconnection of model objects sysl and sys2.

u) | sysi -y

sSys2 -

The closed-loop model sys has u as input vector and y as output vector. The models
sysl and sys2 must be both continuous or both discrete with identical sample times.
Precedence rules are used to determine the resulting model type (see “Rules That
Determine Model Type”).

To apply positive feedback, use the syntax
sys = feedback(sysl,sys2,+1)

By default, feedback(sysl,sys2) assumes negative feedback and is equivalent to
feedback(sysl,sys2,-1).

Finally,

sys = feedback(sysl,sys2,feedin,feedout)

feedback

computes a closed-loop model sys for the more general feedback loop.

The vector Feedin contains indices into the input vector of sysl and specifies which
inputs u are involved in the feedback loop. Similarly, Feedout specifies which outputs y
of sysl are used for feedback. The resulting model sys has the same inputs and outputs
as sysl (with their order preserved). As before, negative feedback is applied by default
and you must use

sys = feedback(sysl,sys2,feedin,feedout,+1)
to apply positive feedback.

For more complicated feedback structures, use append and connect.

Examples
Example 1
+
torgue — (| 5 | velocity

1-185

1 Functions — Alphabetical List

1-186

To connect the plant

252 +55+1

s2+25+3

G(s) =

with the controller

H(s) =25+2)
s+10

using negative feedback, type

G = tf([2 5 1],.[1 2 3], "inputname”, "torque”, ...
"outputname”, "velocity");

H = zpk(-2,-10,5)

Cloop = feedback(G,H)

These commands produce the following result.

Zero/pole/gain from input '"torque'" to output "velocity":
0.18182 (s+10) (s+2.281) (s+0.2192)

(s+3.419) (s™2 + 1.763s + 1.064)

The result is a zero-pole-gain model as expected from the precedence rules. Note that
Cloop inherited the input and output names from G.

Example 2

Consider a state-space plant P with five inputs and four outputs and a state-space
feedback controller K with three inputs and two outputs. To connect outputs 1, 3, and 4
of the plant to the controller inputs, and the controller outputs to inputs 4 and 2 of the
plant, use

feedin = [4 2];
feedout = [1 3 4];
Cloop = feedback(P,K,feedin,feedout)

Example 3

You can form the following negative-feedback loops

feedback

— == G - =) -
t g

by

Cloop = feedback(G,1) % left diagram

Cloop = feedback(l1,G) % right diagram

Limitations

The feedback connection should be free of algebraic loop. If D; and D, are the feedthrough
matrices of sysl and sys2, this condition is equivalent to:

* I+ D;D;nonsingular when using negative feedback

* I —D;D;nonsingular when using positive feedback.

See Also

series | parallel | connect

Introduced before R2006a

1-187

1 Functions — Alphabetical List

1-188

filt

Specify discrete transfer functions in DSP format

Syntax

sys = Filt(num,den)
sys = Filt(num,den,Ts)
sys = Ffilt(M)
Description

In digital signal processing (DSP), it is customary to write transfer functions as rational
expressions in z ' and to order the numerator and denominator terms in ascending
powers of 2 *. For example:

1

-1\ _ 2+z
H(Z)_ 1+0.4271 42,72

The function Fi It is provided to facilitate the specification of transfer functions in DSP
format.

sys = Filt(num,den) creates a discrete-time transfer function sys with
numerator(s) num and denominator(s) den. The sample time is left unspecified (sys.Ts

= -1) and the output sys is a TF object.

filt(num,den,Ts) further specifies the sample time TS (in seconds).

sys

sys = Filt(M) specifies a static filter with gain matrix M.

Any of the previous syntaxes can be followed by property name/property value pairs of
the form

"Property®,Value

filt

Each pair specifies a particular property of the model, for example, the input names or
the transfer function variable. For information about the available properties and their
values, see the tf reference page.

Arguments

For SISO transfer functions, num and den are row vectors containing the numerator and
denominator coefficients ordered in ascending powers of z*. For example, den = [1
0.4 2] represents the polynomial 1 + 0.4z + 2272

MIMO transfer functions are regarded as arrays of SISO transfer functions (one per I/
O channel), each of which is characterized by its numerator and denominator. The input
arguments num and den are then cell arrays of row vectors such that:

* num and den have as many rows as outputs and as many columns as inputs.

* Their (i, j) entries num{i, j} and den{i, j} specify the numerator and denominator
of the transfer function from input j to output i.

If all SISO entries have the same denominator, you can also set den to the row vector
representation of this common denominator.

Examples

Create a two-input digital filter with input names "channell® and "channel2":

num = {1 , [1 0.3]};
den = {[1 1 2] ,[5 21}:
H = filt(num,den, "inputname”,{"channell® "channel2"})

This syntax returns:

Transfer function from input "channell™ to output:

1+ zM-1 + 2 z~-2

Transfer function from input "channel2"™ to output:
1+0.32z1

1-189

1 Functions — Alphabetical List

5+ 2 zn-1

Sample time: unspecified

More About
Tips

filt behaves as tF with the Variable property set to "z~-1". See tF entry below for
details.

See Also
tf | zpk | ss

Introduced before R2006a

1-190

fnorm

fnorm

Pointwise peak gain of FRD model

Syntax

fnrm = fnorm(sys)
fnrm = fnorm(sys, ntype)
Description

fnrm = fnorm(sys) computes the pointwise 2-norm of the frequency response
contained in the FRD model sys, that is, the peak gain at each frequency point. The
output Fnrm is an FRD object containing the peak gain across frequencies.

fnrm = fnorm(sys,ntype) computes the frequency response gains using the matrix
norm specified by ntype. See norm for valid matrix norms and corresponding NTYPE
values.

See Also

norm | abs

Introduced in R2006a

1-191

1 Functions — Alphabetical List

1-192

frd

Create frequency-response data model, convert to frequency-response data model

Syntax

sys = frd(response, frequency)

sys frd(response, frequency,Ts)
sys = frd

sysfrd = frd(sys, frequency)
sysfrd = frd(sys,frequency,units)

Description

sys = frd(response, frequency) creates a frequency-response data (frd) model
object sys from the frequency response data stored in the multidimensional array
response. The vector Frequency represents the underlying frequencies for the
frequency response data. See Data Format for the Argument Response in FRD Models for
a list of response data formats.

sys = frd(response, frequency,Ts) creates a discrete-time Frd model object
sys with scalar sample time Ts. Set Ts = -1 to create a discrete-time Frd model object
without specifying the sample time.

sys = frd creates an empty Frd model object.

The input argument list for any of these syntaxes can be followed by property name/
property value pairs of the form

"PropertyName” ,PropertyValue

You can use these extra arguments to set the various properties the model. For more
information about available properties of frd models, see “Properties” on page 1-193.

To force an FRD model sys to inherit all of its generic LTI properties from any existing
LTI model refsys, use the syntax

sys = frd(response,frequency, Itisys)

frd

sysfrd = frd(sys, frequency) converts a dynamic system model sys to frequency
response data form. The frequency response is computed at the frequencies provided by
the vector Frequency, in rad/TimeUnit, where TimeUnit is the time units of the input
dynamic system, specified in the TimeUnit property of sys.

sysfrd = frd(sys, frequency,units) converts a dynamic system model to an frd
model and interprets frequencies in the frequency vector to have the units specified
by the string units. For a list of values for the string units, see the FrequencyUnit
property in “Properties” on page 1-193.

Arguments

When you specify a SISO or MIMO FRD model, or an array of FRD models, the input
argument Frequency is always a vector of length Nf, where NT is the number of
frequency data points in the FRD. The specification of the input argument response is
summarized in the following table.

Data Format for the Argument Response in FRD Models

Model Form Response Data Format

SISO model Vector of length NF for which response(i) is the frequency
response at the frequency frequency (i)

MIMO model with Ny Ny-by-Nu-by-Nf multidimensional array for which
outputs and Nu inputs response(i, j ,Kk) specifies the frequency response from input
J to output 1 at frequency Frequency (k)

S1-by-...-by-Sn array Multidimensional array of size [Ny Nu S1 . .. Sn] for which
of models with Ny response(i, J,k, 1) specifies the array of frequency response
outputs and Nu inputs data from input j to output 1 at frequency Frequency (k)

Properties

frd objects have the following properties:

Frequency

Frequency points of the frequency response data. Specify Frequency values in the units

specified by the FrequencyUnit property.

1-193

1 Functions — Alphabetical List

1-194

FrequencyUnit
Frequency units of the model.

FrequencyUnit is a string that specifies the units of the frequency vector in the
Frequency property. Set FrequencyUnit to one of the following values:

* "rad/TimeUnit”
+ "cycles/TimeUnit"

* “rad/s"
* "Hz*

+ "kHz*

* "MHz"

* "GHz"

* "rpm”

The units "rad/TimeUnit" and "cycles/TimeUnit" are relative to the time units
specified in the TimeUnit property.

Changing this property changes the overall system behavior. Use chgFrequUnit to
convert between frequency units without modifying system behavior.

Default: "rad/TimeUnit*®
ResponseData
Frequency response data.

The "ResponseData” property stores the frequency response data as a 3-D array of
complex numbers. For SISO systems, "ResponseData” is a vector of frequency response
values at the frequency points specified in the "Frequency” property. For MIMO
systems with Nu inputs and Ny outputs, "ResponseData” is an array of size [Ny Nu
Nw], where Nw is the number of frequency points.

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for
each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the
TimeUnit property. For discrete-time systems, specify transport delays in integer
multiples of the sample time, Ts.

frd

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array.
Each entry of this array is a numerical value that represents the transport delay for the
corresponding input/output pair. You can also set ioDelay to a scalar value to apply the
same delay to all input/output pairs.

Default: O for all input/output pairs
InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For
continuous-time systems, specify input delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify input delays in integer multiples of the
sample time Ts. For example, InputDelay = 3 means a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this
vector is a numerical value that represents the input delay for the corresponding input
channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0
OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output
channel. For continuous-time systems, specify output delays in the time unit stored

in the TimeUnit property. For discrete-time systems, specify output delays in integer
multiples of the sample time Ts. For example, OutputDelay = 3 means a delay of three
sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry
1s a numerical value representing the output delay for the corresponding output channel.
You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels
Ts

Sample time. For continuous-time models, Ts = 0. For discrete-time models, TS is a
positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sample time, set Ts = -1.

1-195

1 Functions — Alphabetical List

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sample time of a discrete-time system.

Default: O (continuous time)
TimeUnit

String representing the unit of the time variable. This property specifies the units for
the time variable, the sample time Ts, and any time delays in the model. Use any of the
following values:

* "nanoseconds”

* "microseconds
« "milliseconds”
+ "seconds”

* "minutes”

* "hours*
+ T"days”
+ "weeks”

* "months”
+ “years"

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: "seconds”
InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if Sys is a two-input model, enter:

sys. InputName = "controls®;

1-196

frd

The input names automatically expand to {"controls(1)"; "controls(2)"}.

You can use the shorthand notation u to refer to the InputName property. For example,
SYS.U is equivalent to sys. InputName

Input channel names have several uses, including:

+ Identifying channels on model display and plots
+ Extracting subsystems of MIMO systems

* Specifying connection points when interconnecting models
Default: Empty string " " for all input channels
InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string " * for all input channels
InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys. InputGroup.controls = [1 2];
sys. InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, b, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:, "controls®)
Default: Struct with no fields
OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

1-197

1 Functions — Alphabetical List

1-198

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if Sys is a two-output model, enter:

sys.OutputName = "measurements”;

The output names automatically expand to
{"measurements(1) " ; "measurements(2)"}.

You can use the shorthand notation y to refer to the OutputName property. For example,
Sys.Yy is equivalent to sys.OutputName.

Output channel names have several uses, including:

+ Identifying channels on model display and plots
+ Extracting subsystems of MIMO systems

* Specifying connection points when interconnecting models
Default: Empty string " " for all output channels
OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string " * for all output channels
OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the

output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];
sys. InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys("measurement”,:)

frd

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.
Default: = *

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}
UserData

Any type of data you want to associate with system. Set UserData to any MATLAB data
type.

Default: []
SamplingGrid
Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

sysarr.SamplingGrid = struct("time",0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

1-199

1 Functions — Alphabetical List

1-200

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct("zeta®",zeta, "w",w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M
M(:,:,1,1) [zeta=0.3, w=5] =

s"2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =

sh"2 + 3.5 s + 25

For model arrays generated by linearizing a Simulink® model at multiple parameter
values or operating points, the software populates SamplingGrid automatically with the
variable values that correspond to each entry in the array. For example, the Simulink
Control Design™ commands linearize and slLinearizer populate SamplingGrid in
this way.

Default: []

Examples

Create Frequency-Response Model

Create a SISO FRD model from a frequency vector and response data:

% generate a frequency vector and response data
freq = logspace(1,2);

resp = .05*(freq).*exp(i*2*freq);

% Create a FRD model

sys = frd(resp,freq);

frd

More About

“What Are Model Objects?”
“Frequency Response Data (FRD) Models”

See Also
chgTimeUnit | chgFreqUnit | frdata | set | ss | tF | zpk | idfrd

Introduced before R2006a

1-201

1 Functions — Alphabetical List

1-202

frdata

Access data for frequency response data (FRD) object

Syntax

[response,freq] = frdata(sys)

[response, freq,covresp] = frdata(sys)
[response, freq,Ts,covresp] = frdata(sys, v")
[response,freq,Ts] = frdata(sys)

Description

[response,freq] = frdata(sys) returns the response data and frequency
samples of the FRD model sys. For an FRD model with Ny outputs and Nu inputs at NF
frequencies:

* response is an Ny-by-Nu-by-Nf multidimensional array where the (i,J) entry
specifies the response from input j to output i.

+ freqis a column vector of length NF that contains the frequency samples of the FRD
model.

See the frd reference page for more information on the data format for FRD response
data.

[response, freq,covresp] = frdata(sys) also returns the covariance covresp
of the response data resp for idfrd model sys. (Using 1dfrd models requires

System Identification Toolbox software.) The covariance covresp is a 5D-array where
covH(1,]j,k, :,) contains the 2-by-2 covariance matrix of the response resp(i,j,k).
The (1,1) element is the variance of the real part, the (2,2) element the variance of
the imaginary part and the (1,2) and (2,1) elements the covariance between the real
and imaginary parts.

For SISO FRD models, the syntax
[response,freq] = frdata(sys,"v")

forces Frdata to return the response data as a column vector rather than a 3-
dimensional array (see example below). Similarly

frdata

[response, freq,Ts,covresp] = frdata(sys, "v") for an IDFRD model sys
returns covresp as a 3-dimensional rather than a 5-dimensional array.

[response,freq,Ts] = frdata(sys) also returns the sample time Ts.

Other properties of Sys can be accessed with get or by direct structure-like referencing
(e.g., sys.Frequency).

Arguments

The input argument sys to frdata must be an FRD model.

Examples

Extract Data from Frequency Response Data Model
Create a frequency response data model and extract the frequency response data.

Create a frequency response data by computing the response of a transfer function on a
grid of frequencies.

H tf([-1.2,-2.4,-1.5],[1,20,9.1]);
w logspace(-2,3,101);
sys = frd(H,w);

sys is a SISO frequency response data (Frd) model containing the frequency response at
101 frequencies.

Extract the frequency response data from sys.
[response,freq] = frdata(sys);

response is a 1-by-1-by-101 array. response(1,1,Kk) is the complex frequency
response at the frequency freq(k).

See Also
frd | get | set | freqresp

Introduced before R2006a

1-203

1 Functions — Alphabetical List

1-204

freqresp

Frequency response over grid

Syntax

[H,wout] = fregresp(sys)

H = freqgresp(sys,w)

H = fregresp(sys,w,units)
[H,wout,covH] = fregresp(idsys,...)

Description

[H,wout] = fregresp(sys) returns the frequency response of the dynamic system
model sys at frequencies wout. The freqresp command automatically determines the
frequencies based on the dynamics of sys.

H = fregresp(sys,Ww) returns the frequency response on the real frequency grid
specified by the vector w.

H = fregresp(sys,w,units) explicitly specifies the frequency units of w with the
string units.

[H,wout,covH] = fregresp(idsys, ...) also returns the covariance covH of the
frequency response of the identified model 1dsys.

Input Arguments

sys

Any dynamic system model or model array.
W

Vector of real frequencies at which to evaluate the frequency response. Specify
frequencies in units of rad/TimeUnit, where TimeUnit is the time units specified in the
TimeUnit property of sys.

fregresp

units

String specifying the units of the frequencies in the input frequency vector w. Units can
take the following values:

+ "rad/TimeUnit" — radians per the time unit specified in the TimeUnit property of
sSys

+ "cycles/TimeUnit" — cycles per the time unit specified in the TimeUnit property
of sys

* "rad/s"
+ "Hz*

* "kHz"

* "MHZz"

* "GHz"

* "rpm”

Default: "rad/TimeUnit"
idsys

Any identified model.

Output Arguments

H

Array containing the frequency response values.

If sys is an individual dynamic system model having Ny outputs and Nu inputs, His a
3D array with dimensions Ny-by-Nu-by-Nw, where Nw is the number of frequency points.

Thus, H(:, : ,K) is the response at the frequency w(k) or wout(k).

If sys is a model array of size [Ny Nu S1 ... Sn], H is an array with dimensions Ny-
by-Nu-by-Nw-by-S1-by-...-by-Sn] array.

If sys is a frequency response data model (such as frd, genfrd, or idfrd),
freqresp(sys,w) evaluates to NaN for values of w falling outside the frequency

1-205

1 Functions — Alphabetical List

1-206

interval defined by sys.frequency. The freqresp command can interpolate between
frequencies in sys. frequency. However, freqresp cannot extrapolate beyond the
frequency interval defined by sys.frequency.

wout

Vector of frequencies corresponding to the frequency response values in H. If you omit w
from the inputs to freqresp, the command automatically determines the frequencies of
wout based on the system dynamics. If you specify w, then wout =w

covH

Covariance of the response H. The covariance is a 5D array where covH(i, j,k,:,:)
contains the 2-by-2 covariance matrix of the response from the ith input to the jth
output at frequency w(k). The (1,1) element of this 2-by-2 matrix is the variance of the
real part of the response. The (2,2) element is the variance of the imaginary part. The

(1,2) and (2,1) elements are the covariance between the real and imaginary parts of the
response.

Examples

Frequency Response

Compute the frequency response of the 2-input, 2-output system

0 L
sys = s+1
s—1 1
s+2
sysll = O;
sys22 = 1;
sysl2 = tf(4,[1 1]);

sys21 tf([1 -1].[1 2]);
sys = [sysll,sysl2;sys21,sys22];

[H,wout] = freqresp(sys);

fregresp

His a 2-by-2-by-45 array. Each entry H(:, : ,K) in H is a 2-by-2 matrix giving the
complex frequency response of all input-output pairs of Sys at the corresponding
frequency wout(k). The 45 frequencies in wout are automatically selected based on the
dynamics of sys.

Response on Specified Frequency Grid

Compute the frequency response of the 2-input, 2-output system

1
sys = s+1
s—1 1
s+2

on a logarithmically-spaced grid of 200 frequency points between 10 and 100 radians per
second.

sysll = O;

sys22 = 1;

sysl2 = tf(4,[1 1]D);
sys21 = tf([1 -1].[1 2]);

sys = [sysll,sysl2;sys21,sys22];

w = logspace(1,2,200);

H = fregresp(sys,w);

His a 2-by-2-by-200 array. Each entry H(:, : ,Kk) in H is a 2-by-2 matrix giving the
complex frequency response of all input-output pairs of Sys at the corresponding
frequency w(k).

Frequency Response and Associated Covariance

Compute the frequency response and associated covariance for an identified model at its
peak response frequency.

load iddatal z1

model = procest(zl, "P2UZ%);
w = 4.26;

1-207

1 Functions — Alphabetical List

1-208

[H,~,covH] = fregresp(model, w)

Alternatives

Use eval fr to evaluate the frequency response at individual frequencies or small
numbers of frequencies. Freqresp is optimized for medium-to-large vectors of
frequencies.

More About

Frequency Response

In continuous time, the frequency response at a frequency o is the transfer function value
at s = jo. For state-space models, this value is given by

H(jw)=D+C(jol - A)'B

In discrete time, the frequency response is the transfer function evaluated at points
on the unit circle that correspond to the real frequencies. freqresp maps the real

frequencies w(1),..., w(N) to points on the unit circle using the transformation z = e/, .

T, 1s the sample time. The function returns the values of the transfer function at the
resulting z values. For models with unspecified sample time, freqresp uses 7T, = 1.

Algorithms

For transfer functions or zero-pole-gain models, freqresp evaluates the numerator(s)
and denominator(s) at the specified frequency points. For continuous-time state-space
models (4, B, C, D), the frequency response is

D+C(jw—A)_1B, O =1,...,0y

For efficiency, A is reduced to upper Hessenberg form and the linear equation (jo —A)X
= B s solved at each frequency point, taking advantage of the Hessenberg structure.
The reduction to Hessenberg form provides a good compromise between efficiency and
reliability. See [1] for more details on this technique.

fregresp

References

[1] Laub, A.dJ., "Efficient Multivariable Frequency Response Computations," IEEE
Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

See Also

bode | nyquist | interp | evalfr | nichols | sigma | IinearSystemAnalyzer |
spectrum

Introduced before R2006a

1-209

1 Functions — Alphabetical List

freqsep

Slow-fast decomposition

Syntax

[Gs,Gf] = freqsep(G, fcut)

[Gs,GF] = freqsep(G, fcut,options)
Description

[Gs,GF] = fregsep(G,fcut) decomposes a linear dynamic system into slow and fast
components around the specified cutoff frequency. The decomposition is such that G = Gs
+ GF.

[Gs,GF] = freqsep(G, fcut,options) specifies additional options for the
decomposition.

Examples

Decompose Model into Fast and Slow Dynamics

Load a dynamic system model.

load numdemo Pd
bode(Pd)

1-210

fregsep

Magnitude {dB)

FPhase (deq)

Bode Diagram

100

-100

-150

-180

-360 |

-540 T

720
10’

10° 10
Frequency (rad/s)

[=r]

Pd has four complex poles and one real pole. The Bode plot shows a resonance around 210
rad/s and a higher-frequency resonance below 10,000 rad/s.

Decompose this model around 1000 rad/s to separate these two resonances.

[Gs,GF] = freqgsep(Pd,10M3);
bode(Pd, Gs,Gf)

legend("original®, "slow", "fast", "Location”, "Southwest®)

1-211

1 Functions — Alphabetical List

Bode Diagram

100
_—-'I\\«H

E :E = . 4
g
% E I \--- i
E --H":;—-._-—'
E 50 = -
)]
m \
= 100} S .

360 — T T T

N S

g o —
3 -~ I —ﬁ“___“—————ﬂl
] e | Dﬂglnﬂ u.""“ i

AR
i 360 slow KH

fast
220
10’ 102 10° 10 10°

Frequency (rad/s)

[=r]

]

The Bode plot shows that the slow component, Gs, contains only the lower-frequency
resonance. This component also matches the DC gain of the original model. The fast
component, GF, contains the higher-frequency resonances and matches the response of
the original model at high frequencies. The sum of the two components Gs+GT yields the

original model.

Separate Nearby Modes by Adjusting Tolerance

Decompose a model into slow and fast components between poles that are closely spaced.

The following system includes a real pole and a complex pair of poles that are all close to

s=-2.

G = zpk(-.5,[-1-9999 -2+le-4i -2-le-4i],10);

1-212

fregsep

Try to decompose the model about 2 rad/s, so that the slow component cotains the real
pole and the fast component contains the complex pair.

[Gs,GF] = fregsep(G,2);

Warning: One or more fast modes could not be separated from the slow modes. To
force separation, increase the absolute or relative tolerances ('AbsTol™ and
"RelTol" options). Type "help fregsepOptions™ for more information.

These poles are too close together for Freqsep to separate. Increase the relative
tolerance to allow the separation.

options

[Gs,Gf]

fregsepOptions("RelTol",1le-4);
freqsep(G,2,options);

Now freqgsep successfully separates the dynamics about 2 rad/s.

slowpole = pole(Gs)
fastpole = pole(G¥T)
slowpole =

-1.9999
fastpole =

-2.0000 + 0.00011i
-2.0000 - 0.00011i

Input Arguments

G — Dynamic system to decompose
numeric L'TT model

Dynamic system to decompose, specified as a numeric LTI model, such as a ss or tF
model.

fcut — Cutoff frequency
positive scalar

1-213

1 Functions — Alphabetical List

1-214

Cutoff frequency for fast-slow decomposition, specified as a positive scalar. The output
Gs contains all poles with natural frequency less than fcut. The output GF contains all
poles with natural frequency greater than or equal to fcut.

options — Options for decomposition
freqsepOptions options set

Options for the decomposition, specified as an options set you create with
fregsepOptions. Available options include absolute and relative tolerance for accuracy
of the decomposed systems.

Output Arguments

Gs — Slow dynamics
numeric LTI model

Slow dynamics of the decomposed system, returned as a numeric LTI model of the same
type as G. Gs contains all poles of G with natural frequency less than Fcut, and is such
that G = Gs + GF.

GF — Fast dynamics
numeric LTI model

Fast dynamics of the decomposed system, returned as a numeric LTI model of the same
type as G. GF contains all poles of G with natural frequency greater than or equal to Fcut,
and 1s such that G = Gs + Gf.

See Also

fregsepOptions

Introduced in R2014a

freqsepOptions

freqsepOptions

Options for slow-fast decomposition

Syntax

opt = fregsepOptions

opt = fregsepOptions(Name,Value)

Description

opt = freqgsepOptions returns the default options for freqsep

opt = fregsepOptions(Name,Value) returns an options set with the options

specified by one or more Name, Value pair arguments.

Examples

Separate Nearby Modes by Adjusting Tolerance
Decompose a model into slow and fast components between poles that are closely spaced.

The following system includes a real pole and a complex pair of poles that are all close to
s=-2.

G = zpk(-.5,[-1-9999 -2+le-4i -2-le-4i],10);

Try to decompose the model about 2 rad/s, so that the slow component cotains the real
pole and the fast component contains the complex pair.

[Gs,GF] = fregsep(G,2);

Warning: One or more fast modes could not be separated from the slow modes. To
force separation, increase the absolute or relative tolerances (“AbsTol*™ and
"RelTol" options). Type "help fregsepOptions™ for more information.

These poles are too close together for Freqsep to separate. Increase the relative
tolerance to allow the separation.

1-215

1 Functions — Alphabetical List

options = freqsepOptions(“RelTol",1le-4);
[Gs,GF] = fregsep(G,2,o0ptions);
Now freqgsep successfully separates the dynamics about 2 rad/s.
slowpole = pole(Gs)
fastpole = pole(GF)
slowpole =
-1.9999
fastpole =

-2.0000 + 0.00011#
-2.0000 - 0.0001+%

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "AbsTol " ,1e-4

"AbsTol" — Absolute tolerance for decomposition
0 (default) | nonnegative scalar

Absolute tolerance for slow-fast decomposition, specified as a nonnegative scalar value.
freqgresp ensures that the frequency responses of the original system, G, and the sum
of the decomposed systems Gs+G¥, differ by no more than AbsTol + RelTol*abs(G).
Increase AbsTol to help separate nearby modes, at the expense of the accuracy of the
decomposition.

"RelTol " — Relative tolerance for decomposition
1le-8 (default) | nonnegative scalar

1-216

freqsepOptions

Relative tolerance for slow-fast decomposition, specified as a nonnegative scalar value.
freqresp ensures that the frequency responses of the original system, G, and the sum
of the decomposed systems Gs+Gf, differ by no more than AbsTol + RelTol*abs(G).
Increase RelTol to help separate nearby modes, at the expense of the accuracy of the
decomposition.

Output Arguments

opt — Options for freqsep
fregsepOptions options set

Options for Freqgsep, returned as a FreqsepOptions options set. Use opt as the last
argument to freqsep when computing slow-fast decomposition.

See Also
fregsep

Introduced in R2014a

1-217

1 Functions — Alphabetical List

1-218

fselect

Select frequency points or range in FRD model

fselect(sys,fmin,fmax)
fselect(sys, index)

Description

subsys = fselect(sys, fmin, fmax) takes an FRD model sys and selects the portion
of the frequency response between the frequencies fmin and fmax. The selected range
[fmin, fmax] should be expressed in the FRD model units. For an IDFRD model
(requires System Identification Toolbox software), the SpectrumData, CovarianceData
and NoiseCovariance values, if non-empty, are also selected in the chosen range.

subsys = fselect(sys, index) selects the frequency points specified by the vector of
indices index. The resulting frequency grid is

sys.Frequency(index)

See Also
fcat | fdel | interp | frd

Introduced before R2006a

gcare

gcare

Generalized solver for continuous-time algebraic Riccati equation

Syntax

[X,L,report] = gcare(H,J,ns)
[X1,X2,D,L] = gcare(H, ..., "factor"™)

Description

[X,L,report] = gcare(H,J,ns) computes the unique stabilizing solution X of the
continuous-time algebraic Riccati equation associated with a Hamiltonian pencil of the
form

A F S1 E 0 0
H-tJj=| G -A" -S2|-|0 E 0
S2” S R 0 0 O

The optional input ns is the row size of the A matrix. Default values for J and ns
correspond to E=ITand R=1].

Optionally, gcare returns the vector L of closed-loop eigenvalues and a diagnosis report
with value:

+ -11if the Hamiltonian pencil has jw-axis eigenvalues

+ -2 if there is no finite stabilizing solution X

* 0 if a finite stabilizing solution X exists
This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = gcare(H, ..., "factor") returns two matrices X1, X2 and a diagonal
scaling matrix D such that X = D*(X2/X1)*D. The vector L contains the closed-loop
eigenvalues. All outputs are empty when the associated Hamiltonian matrix has
eigenvalues on the imaginary axis.

1-219

1 Functions — Alphabetical List

See Also

care | gdare

Introduced before R2006a

1-220

gdare

gdare

Generalized solver for discrete-time algebraic Riccati equation

Syntax

[X,L,report] = gdare(H,J,ns)
[X1,X2,D,L] = gdare(H,J,NS, "factor")

Description

[X,L,report] = gdare(H,J,ns) computes the unique stabilizing solution X of the
discrete-time algebraic Riccati equation associated with a Symplectic pencil of the form

A F B][E 0 0
H-tJ=|-Q E -S|-|0 A 0
S 0 R| |0 B 0

The third input ns is the row size of the A matrix.

Optionally, gdare returns the vector L of closed-loop eigenvalues and a diagnosis report
with value:

+ -1 if the Symplectic pencil has eigenvalues on the unit circle

+ -2 1if there is no finite stabilizing solution X

+ 0 1if a finite stabilizing solution X exists
This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = gdare(H,J,NS, "factor") returns two matrices X1, X2 and a
diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector L contains the closed-
loop eigenvalues. All outputs are empty when the Symplectic pencil has eigenvalues on
the unit circle.

See Also

dare | gcare

1-221

1 Functions — Alphabetical List

Introduced before R2006a

1-222

genfrd

genfrd

Generalized frequency response data (FRD) model

Description

Generalized FRD (genfrd) models arise when you combine numeric FRD models
with models containing tunable components (Control Design Blocks). genfrd models
keep track of how the tunable blocks interact with the tunable components. For more
information about Control Design Blocks, see “Generalized Models”.

Construction

To construct a genfrd model, use series, parallel, ITt, or connect, or the
arithmetic operators +, -, *, /, \, and ?, to combine a numeric FRD model with control
design blocks.

You can also convert any numeric LTI model or control design block sys to genfrd form.
frdsys = genfrd(sys, freqgs, frequnits) converts any static model or dynamic
system Sys to a generalized FRD model. If sys is not an frd model object, genfrd
computes the frequency response of each frequency point in the vector fregs. The
frequencies fregs are in the units specified by the optional argument frequnits. If
frequnits is omitted, the units of freqs are "rad/TimeUnit".

frdsys = genfrd(sys,freqgs,frequnits, timeunits) further specifies the time
units for converting sys to genfrd form.

For more information about time and frequency units of genfrd models, see “Properties”
on page 1-225.

Input Arguments
sys

A static model or dynamic system model object.

1-223

1 Functions — Alphabetical List

fregs
Vector of frequency points. Express frequencies in the unit specified in frequnits.
frequnits

String specifying the frequency units of the genfrd model. Set frequnits to one of the
following values:

* “rad/TimeUnit-”
+ "cycles/TimeUnit*

* "rad/s"
c "Hz*

+ "kHz"

* "MHz"

+ "GHz"

* “rpm”

Default: "rad/TimeUnit"
timeunits

String specifying the time units of the genfrd model. Set timeunits to one of the
following values:

* "nanoseconds”

* "microseconds”

* "milliseconds”

+ "seconds”

* "minutes”

* "hours-
+ "days”
+ "weeks"

* "months”
+ "years”

Default: "seconds”

1-224

genfrd

Properties

Blocks

Structure containing the control design blocks included in the generalized LTI model
or generalized matrix. The field names of Blocks are the Name property of each control
design block.

You can change some attributes of these control design blocks using dot notation. For
example, if the generalized LTI model or generalized matrix M contains a realp tunable
parameter a, you can change the current value of a using:

M.Blocks.a.Value = -1;
Frequency

Frequency points of the frequency response data. Specify Frequency values in the units
specified by the FrequencyUnit property

FrequencyuUnit
Frequency units of the model.

FrequencyUnit is a string that specifies the units of the frequency vector in the
Frequency property. Set FrequencyUnit to one of the following values:

* "rad/TimeUnit"
+ "cycles/TimeUnit"

+ “rad/s®
* "Hz*"

* "kHz*

* "MHz*

+ "GHz"

* “rpm”

The units "rad/TimeUnit" and "cycles/TimeUnit" are relative to the time units
specified in the TimeUnit property.

Changing this property changes the overall system behavior. Use chgFrequnit to
convert between frequency units without modifying system behavior.

1-225

1 Functions — Alphabetical List

1-226

Default: "rad/TimeUnit”
InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For
continuous-time systems, specify input delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify input delays in integer multiples of the
sample time Ts. For example, InputDelay = 3 means a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this
vector is a numerical value that represents the input delay for the corresponding input
channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0
OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output
channel. For continuous-time systems, specify output delays in the time unit stored

in the TimeUnit property. For discrete-time systems, specify output delays in integer
multiples of the sample time Ts. For example, OutputDelay = 3 means a delay of three
sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry
is a numerical value representing the output delay for the corresponding output channel.
You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: O for all output channels
Ts

Sample time. For continuous-time models, Ts = 0. For discrete-time models, TS is a
positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sample time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sample time of a discrete-time system.

genfrd

Default: O (continuous time)
TimeUnit

String representing the unit of the time variable. This property specifies the units for
the time variable, the sample time Ts, and any time delays in the model. Use any of the
following values:

* "nanoseconds”

* "microseconds”

* "milliseconds*®

* T"seconds”

* "minutes”

* "hours-
+ "days”
+ "weeks"

* "months*
- "years"

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: "seconds”
InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if Sys is a two-input model, enter:

sys. InputName = "controls”;
The input names automatically expand to {"controls(1)"; "controls(2)"}.

You can use the shorthand notation u to refer to the InputName property. For example,
SYS.U is equivalent to sys. InputName.

1-227

1 Functions — Alphabetical List

Input channel names have several uses, including:

+ Identifying channels on model display and plots
+ Extracting subsystems of MIMO systems

* Specifying connection points when interconnecting models
Default: Empty string * " for all input channels
InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

Default: Empty string " " for all input channels
InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys. InputGroup.controls = [1 2];
sys. InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, b, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:, "controls™)
Default: Struct with no fields
OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if Sys is a two-output model, enter:

sys.OutputName = "measurements”;

1-228

genfrd

The output names automatically expand to
{"measurements(1)"; "measurements(2)"}.

You can use the shorthand notation y to refer to the OutputName property. For example,
Sys.Yy is equivalent to sys.OutputName.

Output channel names have several uses, including:

+ Identifying channels on model display and plots
+ Extracting subsystems of MIMO systems

+ Specifying connection points when interconnecting models
Default: Empty string " " for all output channels
OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string " " for all output channels
OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the

output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];
sys. InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys("measurement”,:)
Default: Struct with no fields
Name

System name. Set Name to a string to label the system.

1-229

1 Functions — Alphabetical List

1-230

Default: " "
Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {3}
UserData

Any type of data you want to associate with system. Set UserData to any MATLAB data
type.

Default: []
SamplingGrid
Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

sysarr.SamplingGrid = struct("time”,0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct("“zeta®",zeta, "w",w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

genfrd

M
M(:,:,1,1) [zeta=0.3, w=5] =

sN2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =

s"2 + 3.5s + 25

For model arrays generated by linearizing a Simulink model at multiple parameter
values or operating points, the software populates SamplingGrid automatically with the
variable values that correspond to each entry in the array. For example, the Simulink
Control Design commands linearize and slLinearizer populate SamplingGrid in
this way.

Default: []

More About
Tips

* You can manipulate genfrd models as ordinary frd models. Frequency-domain
analysis commands such as bode evaluate the model by replacing each tunable
parameter with its current value.

. “Models with Tunable Coefficients”

. “Generalized Models”

See Also
frd | genss | getValue | chgFrequnit

Introduced in R2011a

1-231

1 Functions — Alphabetical List

1-232

genmat

Generalized matrix with tunable parameters

Description
Generalized matrices (genmat) are matrices that depend on tunable parameters (see
realp). You can use generalized matrices for parameter studies. You can also use

generalized matrices for building generalized LTI models (see genss) that represent
control systems having a mixture of fixed and tunable components.

Construction

Generalized matrices arise when you combine numeric values with static blocks such as
realp objects. You create such combinations using any of the arithmetic operators +, -,
*. /,\, and ™. For example, if a and b are tunable parameters, the expressionM = a +
b is represented as a generalized matrix.

The internal data structure of the genmat object M keeps track of how M depends on the
parameters a and b. The Blocks property of M lists the parameters a and b.

M = genmat(A) converts the numeric array or tunable parameter A into a genmat
object.

Input Arguments
A
Static control design block, such as a realp object.

If A is a numeric array, M is a generalized matrix of the same dimensions as A, with no
tunable parameters.

If A is a static control design block, M is a generalized matrix whose Blocks property lists
A as the only block.

genmat

Properties

Blocks

Structure containing the control design blocks included in the generalized LTI model
or generalized matrix. The field names of Blocks are the Name property of each control
design block.

You can change some attributes of these control design blocks using dot notation. For
example, if the generalized LTI model or generalized matrix M contains a realp tunable
parameter a, you can change the current value of a using:

M.Blocks.a.Value = -1;
SamplingGrid
Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

sysarr.SamplingGrid = struct("time”",0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct("zeta",zeta, "w",w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

1-233

1 Functions — Alphabetical List

M

M(:,:,1,1) [zeta=0.3, w=5] =

s"2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =

s"2 + 3.5 s + 25

For model arrays generated by linearizing a Simulink model at multiple parameter
values or operating points, the software populates Sampl ingGrid automatically with the
variable values that correspond to each entry in the array. For example, the Simulink
Control Design commands Iinearize and slLinearizer populate SamplingGrid in
this way.

Default: []

Examples

Generalized Matrix With Two Tunable Parameters

This example shows how to use algebraic combinations of tunable parameters to create
the generalized matrix:

1 a+b
M= ,
0 ab
where a and b are tunable parameters with initial values —1 and 3, respectively.

1 Create the tunable parameters using realp.

a
b

realp("a®,-1);
realp("b*",3);

1-234

genmat

2 Define the generalized matrix using algebraic expressions of a and b.
M = [1 atb;0 a*b]

Mis a generalized matrix whose Blocks property contains a and b. The initial value
of MisM = [1 2;0 -3], from the initial values of a and b.

3 (Optional) Change the initial value of the parameter a.

M.Blocks.a.Value = -3;

4 (Optional) Use double to display the new value of M.

double(M)

The new value of MisM = [1 0;0 -9].

More About

. “Models with Tunable Coefficients”
. “Dynamic System Models”

See Also

realp | genss | getValue

Introduced in R2011a

1-235

1 Functions — Alphabetical List

1-236

gensig

Generate test input signals for Isim

Syntax

[u,t] = gensig(type,tau)
[u,t] gensig(type,tau,Tf,Ts)

Description

[u,t] = gensig(type,tau) generates a scalar signal u of class type and with
period tau (in seconds). The following types of signals are available.

"sin” Sine wave.

"square® |Square wave.

"pulse*” Periodic pulse.

gensig returns a vector t of time samples and the vector u of signal values at these
samples. All generated signals have unit amplitude.

[u,t] = gensig(type,tau,TF,Ts) also specifies the time duration TF of the signal
and the spacing Ts between the time samples t.

You can feed the outputs u and t directly to Isim and simulate the response of a single-
input linear system to the specified signal. Since t is uniquely determined by Tf and Ts,
you can also generate inputs for multi-input systems by repeated calls to gensig.

Examples

Generate a square wave with period 5 seconds, duration 30 seconds, and sampling every
0.1 second.

[u,t] = gensig(“square®”,5,30,0.1)

Plot the resulting signal.

gensig

plot(t,u)
axis([0 30 -1 2])
2 T T T T T
1.5F -
il [
05k 1
D -
—05F -
1 1 1 1 1 1
k] 5 10 15 20 25
See Also
Isim

Introduced before R2006a

a0

1-237

1 Functions — Alphabetical List

1-238

genss

Generalized state-space model

Description

Generalized state-space (genss) models are state-space models that include tunable
parameters or components. genss models arise when you combine numeric LTI
models with models containing tunable components (control design blocks). For more
information about numeric LTI models and control design blocks, see “Models with
Tunable Coefficients”.

You can use generalized state-space models to represent control systems having a
mixture of fixed and tunable components. Use generalized state-space models for
control design tasks such as parameter studies and parameter tuning with hinfstruct
(requires Robust Control Toolbox).

Construction

To construct a genss model:

+ Use series, parallel, 1Tt or connect, or the arithmetic operators +, -, *, /7, \,
and ”, to combine numeric LTI models with control design blocks.

+ Use tfF or ss with one or more input arguments that is a generalized matrix (genmat)
instead of a numeric array

* Convert any numeric LTI model, control design block, or sITuner interface (requires
Simulink Control Design), for example, sys, to genss form using:

gensys = genss(sys)

When sys is an sITuner interface, gensys contains all the tunable blocks and
analysis points specified in this interface. To compute a tunable model of a particular
I/0 transfer function, call getl0Transfer(gensys, in,out). Here, in and out are
the analysis points of interest. (Use getPoints(sys) to get the full list of analysis
points.) Similarly, to compute a tunable model of a particular open-loop transfer
function, use getLoopTransfer(gensys, loc). Here, loc is the analysis point of
interest.

genss

Properties

Blocks

Structure containing the control design blocks included in the generalized LTI model
or generalized matrix. The field names of Blocks are the Name property of each control
design block.

You can change some attributes of these control design blocks using dot notation. For
example, if the generalized LTI model or generalized matrix M contains a realp tunable
parameter a, you can change the current value of a using:

M.Blocks.a.Value = -1;
InternalDelay
Vector storing internal delays.

Internal delays arise, for example, when closing feedback loops on systems with delays,
or when connecting delayed systems in series or parallel. For more information about
internal delays, see “Closing Feedback Loops with Time Delays” in the Control System
Toolbox User's Guide.

For continuous-time models, internal delays are expressed in the time unit specified
by the TimeUnit property of the model. For discrete-time models, internal delays are
expressed as integer multiples of the sample time Ts. For example, InternalDelay =
3 means a delay of three sampling periods.

You can modify the values of internal delays. However, the number of entries in
sys. InternalDelay cannot change, because it is a structural property of the model.

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For
continuous-time systems, specify input delays in the time unit stored in the TimeUnit
property. For discrete-time systems, specify input delays in integer multiples of the
sample time Ts. For example, InputDelay = 3 means a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this
vector is a numerical value that represents the input delay for the corresponding input
channel.

1-239

1 Functions — Alphabetical List

1-240

You can also set InputDelay to a scalar value to apply the same delay to all channels.
Default: 0
OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output
channel. For continuous-time systems, specify output delays in the time unit stored

in the TimeUnit property. For discrete-time systems, specify output delays in integer
multiples of the sample time Ts. For example, OutputDelay = 3 means a delay of three
sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry
is a numerical value representing the output delay for the corresponding output channel.
You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels
Ts

Sample time. For continuous-time models, Ts = 0. For discrete-time models, TS is a
positive scalar representing the sampling period. This value is expressed in the unit
specified by the TimeUnit property of the model. To denote a discrete-time model with
unspecified sample time, set Ts = -1.

Changing this property does not discretize or resample the model. Use c2d and d2c to
convert between continuous- and discrete-time representations. Use d2d to change the
sample time of a discrete-time system.

Default: O (continuous time)
TimeUnit

String representing the unit of the time variable. This property specifies the units for
the time variable, the sample time Ts, and any time delays in the model. Use any of the
following values:

* "nanoseconds*®

* "microseconds”

*+ "milliseconds”

+ "seconds*

genss

* "minutes

* "hours*
+ T"days”
+ "weeks"

* "months*
- “years"

Changing this property has no effect on other properties, and therefore changes the
overall system behavior. Use chgTimeUnit to convert between time units without
modifying system behavior.

Default: "seconds”
InputName

Input channel names. Set InputName to a string for single-input model. For a multi-
input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input
models. For example, if Sys is a two-input model, enter:

sys. InputName = "controls”;
The input names automatically expand to {"controls(1)"; "controls(2)"}.

You can use the shorthand notation u to refer to the InputName property. For example,
SYS.U is equivalent to sys. InputName.

Input channel names have several uses, including:

+ Identifying channels on model display and plots
+ Extracting subsystems of MIMO systems

* Specifying connection points when interconnecting models
Default: Empty string " * for all input channels
InputUnit

Input channel units. Use InputUnit to keep track of input signal units. For a single-
input model, set InputUnit to a string. For a multi-input model, set InputUnit to a cell
array of strings. InputUnit has no effect on system behavior.

1-241

1 Functions — Alphabetical List

1-242

Default: Empty string " * for all input channels
InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of
MIMO systems into groups and refer to each group by name. Specify input groups as a
structure. In this structure, field names are the group names, and field values are the
input channels belonging to each group. For example:

sys. InputGroup.controls = [1 2];
sys. InputGroup.noise = [3 5];

creates input groups named controls and noise that include input channels 1, 2 and
3, 5, respectively. You can then extract the subsystem from the controls inputs to all
outputs using:

sys(:,"controls™)
Default: Struct with no fields
OutputName

Output channel names. Set OutputName to a string for single-output model. For a multi-
output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output
models. For example, if Sys is a two-output model, enter:

sys.OutputName = "measurements”;

The output names automatically expand to
{"measurements(1) " ; "measurements(2) "}.

You can use the shorthand notation y to refer to the OutputName property. For example,
Sys.Yy is equivalent to sys.OutputName.

Output channel names have several uses, including:

+ Identifying channels on model display and plots
+ Extracting subsystems of MIMO systems

* Specifying connection points when interconnecting models

Default: Empty string " " for all output channels

genss

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal units. For
a single-output model, set OutputUnit to a string. For a multi-output model, set
OutputUnit to a cell array of strings. OutputUnit has no effect on system behavior.

Default: Empty string " * for all output channels
OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels
of MIMO systems into groups and refer to each group by name. Specify output groups as
a structure. In this structure, field names are the group names, and field values are the
output channels belonging to each group. For example:

sys.OutputGroup.temperature = [1];
sys. InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that include output
channels 1, and 3, 5, respectively. You can then extract the subsystem from all inputs to
the measurement outputs using:

sys("measurement”, :)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.
Default: = *

Notes

Any text that you want to associate with the system. Set Notes to a string or a cell array
of strings.

Default: {}
UserData

Any type of data you want to associate with system. Set UserData to any MATLAB data
type.

1-243

1 Functions — Alphabetical List

1-244

Default: []
SamplingGrid
Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables,
this property tracks the variable values associated with each model in the array. This
information appears when you display or plot the model array. Use this information to
trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set
the field values to the sampled variable values associated with each model in the array.
All sampling variables should be numeric and scalar valued, and all arrays of sampled
values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times € = 0:10. The following code stores
the time samples with the linear models.

sysarr._SamplingGrid = struct("time",0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two
variables, zeta and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct("zeta",zeta, "w",w)

When you display M, each entry in the array includes the corresponding zeta and w
values.

M

M(:,:,1,1) [zeta=0.3, w=5] =

s"2 + 3 s + 25

M(:,:,2,1) [zeta=0.35,